

 page 1 of 5

CODING
Programs for Coding “ in Place”

Project CODING

by

Dipl.-Math. Jürgen Müller

D-64289 Darmstadt

Level: 29/11/2013

Project CODING
Motivation

Author: Jürgen Müller, D-64289 Darmstadt Level: 29/11/2013 page 2 of 5

Motivation
“ Aha, still another symmetric coding system, how boring !”
That isn’t quite correct !
• Both encoding and decoding reaches data throughput results of 2-digit megabytes per

second.

• There are no trapdoor functions, i.e. the CODING-algorithm is absolutely “ clean”
converted. In case of doubt you can download the source code and construct your own
executable files using the Free Pascal compiler (http://www.freepascal.org/) and the
Lazarus development system (http://sourceforge.net/projects/lazarus/). Nobody neither the
author nor other powerful organizations has the possibility in any way to deduce a non
trivial key without checking all possible keys.

• With CODING you can use a special method to enter a key, the so-called “ overlaying”.
You know that: You are advised to use a key as complex as possible and you also have to
change the key every 3 months please ! But why you have to adapt the technique ? Why
the technique cannot adapt to you, why you don’t have the possibility to use handy and
therefore easy to remember keys ?

 You are completely right ! CODING handles that for you !
 How to do it ? Very easy:

You do not enter only an ordinary key but you also enter a name or a set of names of
datasets, which content is used to “ modify” the key.
But hasn’t a “ rogue” the possibility to reproduce this and to consider this by trying to
decode ?
Yes and no ! Up to all information of any overlaying dataset can be used to modify the
initial key. Doing so not all information of a overlaying dataset is selected and used.
Rather this will be controlled by additional parameters and the respective key values at the
referring positions. Because of that the “ rogue” has no other possibility than to overlay
every possible key used to decode by overlay dataset information once again, even if
he/she knows the overlay datasets and the additional parameters !
This action to detect an even simple key reduces the number of decoding tests per time
unit in a deciding way, so the exposing effort of your simple key in conjunction with
overlaying datasets beats the exposing effort of a complex key without overlaying
dataset by far !
If however the overlaying datasets and the additional parameters are unknown, your real
key is generated by your “ simple” key duplicated to fill the maximum key length and then
this intermediate key is “ coincidentally” overwritten at single or multiple positions by
overlaying dataset information. Therefore your real key is an unsystematic key of
maximum key length, so the “ rogue” has to prove all such keys !

As you see, the remembering of complex passwords (which you can’t remember,
therefore you write them down anyway, what’s wrong on the other hand) is brought to an
end. Don’t remember complex rules, the right place for your password is your brain so
you can remember it in a simple way !

http://www.freepascal.org/
http://sourceforge.net/projects/lazarus/

Project CODING
Outline

Author: Jürgen Müller, D-64289 Darmstadt Level: 29/11/2013 page 3 of 5

Outline
1 Description of the Method
The used method of the programs CODINGx (x=1,2,3,...) is suitable for ciphering any data in
place. The method is characterised by
• the feature that input data and output data (coded data) are of the same length,
• a high operation velocity (e.g. 2-digit MB value / sec. having a block length of 512 bytes,

dimension t=1 [see 1.4 above], PC of the author),
• data blocks, independently processed, of (nearly) any block length (e.g. if a block can’t

be deciphered, all other blocks can; the block length can vary inside one dataset),
• the possibility of stream ciphering in form of block cipher as well as using variable

block length and extensive protection against compromising,
• a very high safety growing in any region by appropriately dimensioning (dimension t) the

method (à http://eprint.iacr.org/2013/742.pdf),
• the possibility to generate a “ wide range” of authentication and hash methods in

(nearly) any result length.

With that CODING is the ideal tool
• coding voice over IP, blue tooth/wireless data,
• coding multimedia information (e.g. MP3 data, DVD movies etc.),
• coding any exchange of data (e.g. between customer/client and supplier in industry)

using an extreme uncertain and/or unsafe (public) connection (e.g. via internet).

1.1 Performance
Time-critical coding of mass data is a special challenge. This amongst other things arises in
real-time scenarios, in which a continuous data stream has to be handled just-in-time. Any
delay by data processing being too slow causes a collapse and therefore cannot be used, i.e. it
results in suspending the ciphering process.

The method CODING reduces the amount of multiplications being necessary to a minimum
being required for maintenance of complete safety even if data is of most homogeneous type
(tested case: 1 GB binary zeroes). Because of this the referred processing speed being
significant faster in comparison with other methods will be achieved, where the CODING-
method being more flexible than other methods simultaneously gives a higher safety
(especially for t>1) on the other hand.

1.2 Operation Safety
Conventional coding systems as DES, Triple-DES, AES at fist are working with fixed block
length, so shorter data first has to be expanded to such fixed length. At second interlinked
blocks are a necessity of such systems in many cases to get a sufficient safety, i.e. a defective
block (e.g. by transmission error) makes the deciphering of all following blocks impossible.

CODING however has no fixed block length. I.e. shorter information at the end of a dataset is
not expanded, so the length of the ciphered dataset is unchanged referring to the deciphered
data.

http://eprint.iacr.org/2013/742.pdf

Project CODING
Outline

Author: Jürgen Müller, D-64289 Darmstadt Level: 29/11/2013 page 4 of 5

For the operation safety more essential is the fact that a damaged block doesn’t stop the
deciphering of the following blocks. Especially this is relevant for telephone conversations
(voice over IP), in which a trouble in data stream hasn’t have the automatic consequence to
put up the call completely new. Also transmitting other data with CODING, it is only
necessary to send the incorrect block once again. By modifying the here presented algorithm
(e.g. retaining the restart point parameters of a defective block), the incorrect blocks can be
processed later in a very fast and efficient way.

1.3 Encryption Safety
Even newer coding systems as AES use only keys with maximum length of 2048 bits. In
comparison already the simplest version of CODING (dimension t=1) uses a key with
maximum length of 2048 bits (for dimension t=2 it already comprises 1,048,576 bits of
maximum key length, for dimension t=3 it comprises 402,653,184 bits). In connection with
the input of such keys, CODING includes a method to integrate datasets into the process of
key generation by overlaying the key. Only this method facilitates the generation of useful
“ random” keys of the indicated sizes.

According to explorations of the author (http://eprint.iacr.org/2013/742.pdf) the method can’t
be broken without trying out the most part of all possible keys one after the other. An exact
judgement of the safety especially in the view of information science (i.e. do you always need
to check all possible keys for breaking a nontrivial key or can you reduce the number of
possible keys to be checked) has to be left to a detailed examination.

Regardless of that the author has made extensive tests which prove that, even if data is of
most homogeneous type (only binary zeroes), the method converges against the rectangular
distribution of binary zeroes/ones and bytes or byte-groups respectively.

Further near key examinations have been able to show that even experimental keys differing
form the original key in only one or few bits don’t result in relevant statistical changes of
distributions in relation to the coding data. Also inspecting block differences and its
distributions, it couldn’t discover relevant differences to block contents by chance.

Rather the method presented here can be said to be safe even if both the original data and the
encoded data are known besides the coding algorithm. It is impossible to derive the original
key from this information (except testing all possible keys).

Even compromising a block segment – using highest cipher state – doesn’t compromise
former or subsequent block segments automatically.

1.4 Future Safety
The method CODING covers a (infinite) number of concrete coding processes. The
dimension t of a process within CODING is defined as the number of bytes combined to a
byte-group. For t=1 single bytes are looked at and 1-byte substitution tables are used. For t=2
each 2 bytes are interpreted as a separate byte-group, for which 2-byte substitution tables are
used, etc.

The method CODING with regard to t is not limited, at the moment PC-/Unix-programs fit
for use exist until t=3 developed by the author.

http://eprint.iacr.org/2013/742.pdf

Project CODING
Outline

Author: Jürgen Müller, D-64289 Darmstadt Level: 29/11/2013 page 5 of 5

1.5 Power of Key Spaces
If you “ only” look at the power of the key space (in general (256**t)**(256**t) elements), for
t=1 approx. 3.2317*10**616, for t=2 approx. 6.74114*10**315,652, for t=3 approx.
10**121,210,686 possible key space elements exist (x**t, say “ x to the power of t” , is defined
as x*x*...*x with the value x appears t times). The last number is describable by a single 1
followed by zeroes which occupy more than 33 volumes with 1000 pages any of them with
3600 zeroes (in comparison: atoms in universe: ca. 10**80). It is easy to prove that at least
(256**t)! elements of the key space can be really effective by the algorithms mentioned
before (n!, say “ n factorial” , is defined as 1*2*3*...*n), actual all elements of a key space are
effective.

Under these circumstances t has to choose only “ big enough” to give nobody even with future
conceivable (quantum) computers or computer farms any realistic possibility to decipher data
enciphered by CODING without corresponding key or ciphering parameters in acceptable
time. At the moment this should be the case for t=2 and bigger.

2 Characteristics
§ CODING is an „in place“ method i.e. there is no change of data length.
§ CODING with high operation velocity is suitable for real time processes in stream cipher

mode too.
§ CODING is usable for (nearly) any block length (also variable block length).
§ CODING represents

- a very high operation safety,
- an extreme high encryption safety,
- an extensive protection against compromising, and
- an excellent future safety.

3 Development Stage
The described method CODING has its beginning in preliminary examinations of the author
more than 20 years ago. The consistent development, generalization, and implementation in
Free Pascal programs up to now for the dimensions t=1, t=2, and t=3 recently have been
driven on the basis of changed requirements on part of the potential users and the possibilities
of computers on part of the implementation.

The CODING programs are completely tested and fit for use for t=1, t=2, and t=3.

