

© SYSJM – Jü rgen Mü ller 2013.
Passing on to third party may only be made in the existing form without any change as regards contents or in formal manner.

Description of the Program Family

CODING

Programs for Ciphering „in Place“

User Manual

Dipl.-Math. Jü rgen Mü ller

Version 1.1 / Level: 01/12/2013

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 2

1 Description of the necessary Parameters of the Program CODING4
1.1 Starting..4
1.2 Language..5
1.3 Identification..5
1.4 Restrictions ...6
1.5 Common Things..6
1.6 Output Dataset for Control Information..6
1.7 Output of the Command Line Control Parameters...7
1.8 Parameter Dataset Handling ...7

1.8.1 Parameter Dataset ...8
1.8.2 Using Parameter Dataset ...9
1.8.3 Ciphering after Parameter Dataset Handling ..9
1.8.4 Time Limit ..9
1.8.5 Action reaching Time-out Limit ...9

1.9 Information to Datasets to process ..10
1.10 Exception Dataset ...11
1.11 Processing Form...12
1.12 Statistics..12
1.13 Key Information ...13

1.13.1 Query to Parameter Dataset Security...14
1.13.2 Character Set...14
1.13.3 Input Mode ...15
1.13.4 Keyboard Input...15
1.13.5 Input via Key Dataset ...16
1.13.6 Random Key Input ...16

2 Description of Overlay Information of CODING ...17
2.1 Overlay Information...17
2.2 Position Interval...18
2.3 Overlay Value Interval ...18
2.4 Key Value Interval ...19
2.5 Input Mode ..20
2.6 Keyboard Input..20
2.7 Input via Overlay Datasets ..21
2.8 Overlay Datasets in Direct Mode...22

3 Real Program Processing..24
3.1 Program Initialisation...24
3.2 Program Ciphering ..26

4 Extensions of the Standard Program..27
4.1 Stream Cipher ...27
4.2 Component Exchange Parameter Dataset ..28
4.3 Stream Cipher Usage Value..29
4.4 Compromising Key..29

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 3

4.5 Disturbance of Data Transmission...30
4.6 Further Potential Application Possibilities ..30

5 System and Algorithm Parameters of the Program ...31
5.1 System Parameters...31

5.1.1 Gruppe...31
5.1.2 Modulart ...31
5.1.3 DateiSystem...31
5.1.4 ZeichenSatz ...31
5.1.5 BSigRtL..31
5.1.6 Verpflichtung ..31

5.2 Algorithm Parameters..32
5.2.1 varBlk (CODING1/2)...32
5.2.2 BlockElem..32
5.2.3 BlkKey..32
5.2.4 BlkKey2 (CODING3) ..32
5.2.5 Safety...32
5.2.6 stLoop ..33
5.2.7 stLoopC..33
5.2.8 addLoop...33
5.2.9 opLoop...33
5.2.10 PDLoop..33
5.2.11 EndShift ...34
5.2.12 ClearCore...34
5.2.13 MeanBlksX...34
5.2.14 MeanBlksD...34
5.2.15 MeanBlksO ..34

6 Contact Data ...34

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 4

1 Description of the necessary Parameters of the Program CODING

1.1 Starting
Bat: You can directly call one of the DOS programs (CODINGn.EXE, n=1,2,3) out of MS Windows
(e.g. by double click), whereupon the program is started in a DOS box. Information applying to
DOS programs below is marked „Bat:“ in front of it.

Dia: To start a MS Windows program version (applied information marked „Dia:“ in front of it) you
have to copy the dataset CODING.EXE to the directory used to expand the Windows programs.
Then you can call CODING.EXE to expand and store all necessary components.
Please take into consideration that subdirectories HELPDBx (x=’D’ and x=’E’ at the moment) are
constructed in this expanding directory covering help descriptions of each language.
After expanding CODING.EXE, you can start one of the corresponding MS Windows programs that
means the CODING program in “simple” version (CODINGnS.EXE, n=1,2,3) or the CODING
program in “enlarged” version (CODINGnE.EXE, n=1,2,3).
Having started the program, the main input mask – here the “enlarged” version of CODING1E
(CODING2E/3E analogue) – is shown:

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 5

The main input mask of the “simple” version – here of CODING1S (CODING2S/3S analogue) –
looks like the following:

1.2 Language
Bat: First you are asked the language the following dialog takes place (for example English and
German):
 Language:
 English --> 0
 Deutsch --> 1
Enter the digit corresponding the language you want to have.

Dia: Entering parameters, you can change the language at any time:

1.3 Identification
Bat: It follows the information of the identification page of CODING1 (CODING2/3 analogue):
01111010101101101110000000001010001011011001000011110000110010101100101001000100
1···· · ··· · ·· ··· · ···· · · · ·· · ·· · · ·· · · · · · 0
0· · ▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄ ▄▄ ▄ ▄▄▄▄▄▄ ▄▄ * ·· 1
1 · · ██ ▀▀ ██ █ ██ ▀█ ██ ███ █ ██ ▀▀ ▄▀██ · 1
1 · ·· ██ ██ █ ██ █ ██ ██ █ █ ██ ▀ ██ ·· · 0
0 ·· ██ ██ █ ██ █ ██ ██ █ █ ██ ▄▄▄ ██ ····· 0
0 ·· · ██ ██ █ ██ █ ██ ██ █ █ ██ █ ██ · · ·1
1 ·· ██ ▄▄ ██ █ ██ ▄█ ██ ██ ██ ██ █ ██ ·· · · 0
0· ·· · ▀▀▀▀▀▀ ▀▀▀▀▀▀▀ ▀▀▀▀▀▀▀ ▀▀▀▀▀▀ ▀▀ ▀ ▀▀▀▀▀▀▀ ▀▀ ··· ·1
1 · · · · ···· ··· · · · · ·· ······· · · · ·· ··· · ··· 1
1·· · · · · ·· · ··· · ······· ··· ···· ·· · · ··· · ·· ··· · 0
0 ······ Program for en-/decoding datasets in place (1-byte-groups) ·· · ··0
0 ··· · · · ·· ··· by Jürgen Müller ····· · ·· ···· ·· · · 0
0···· · · ··· ·· ·· · · · ·· ·· · ···· ···· · ···· ·· ···· · · 0
1 · ···· · ··· ··· SYSJM Jürgen Müller ·· · · · ··· · ·· ·· ·· 1
0·· · · · · ··· · ··· ··· · · 6/2007 ··· ···· · ·· · ·· ·· · ·· 1
1 ··· ·· · · ···· ·· ··· ···· ·· · · ···· · ·· ·· ·· · · ····1
0· · · · · · ······ · · ······ · Version 1.1 ·· · ······· · · ··· ···1
0· · · · ·· · ·· ··· ··· · ··· ··· ·· ·· · ···· · · · 0
1· ··· ···· · ---> f o r p r i v a t e u s e o n l y <--- · ·· · 1
0··· ·· · · · · ·· · · · ·· · · · ····· ·· · · · ··· · 1
1 * All rights reserved. The usage of this program is on own responsibility. 0
1···· ·· · ·· · · ·· ·· ··· ··· ·· · ··· ···· ·· · ·· ·1
11110011110110110100110111110100101110110010000011011011010110010011111100000010

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 6

1.4 Restrictions
Bat:/Dia: Please notice that the existing version does not entitle to commercial use. If you need
one of this programs for commercial usage, please turn to the author reachable under contact data
at the end of this manual. Many thanks.
Please notice too that there is no absolute guarantee for the program in spite of highest quality
check. If, in contrary to expectations, problems will be arise which provable are not caused by
wrong services, the author will try hard to solve the problem immediately. Naturally your ideas to
the program, the documentation, etc. are welcome every time.
Using the CODING method (see outline), there is n o possibility a t a l l to get a lost key so it is
for the author (!). Please in case of doubt as a precaution use key or parameter datasets (see
below) to avoid such problems. Many thanks to your comprehension.
Any separate dataset is permitted to be bigger than 4 GB to be processed correctly by the
MS Windows versions of the CODING programs (the actual limit using MS Windows XP is
9,223,372,036,854,775,807 bytes).
„Simple“ and „enlarged“ version of each CODING dialogue program and the corresponding
CODING batch program are complete compatible, but the programs CODING1, CODING2, and
CODING3 are n o t compatible (!).

1.5 Common Things
Bat: After that you can finish the program during the input of program parameters every time by
entering the value ‘9’ or without input of further characters by pressing the RETURN(↵) button
(‘empty input’), so no dataset will be enciphered or deciphered.
Entering overlaying information (see below), also the values ‘0’ and ‘-1’ can do so in individual
case.
You finish every input by pressing the RETURN(↵) button as usual.

Dia: Every time you can get help texts describing separate fields. By entering keyboard characters
into a field, you can press the F1 button to get this help, by double click of the left mouse button
you can get this help for all other fields.
Before using the „Start“ button, there is no action of enciphering
or deciphering datasets or changing parameter datasets. In this
phase and after working, the program can be leaved by pressing the “Exit” button at any time.
Using the „Reset“ button, you can switch all fields to their default values at these phases.

Bat:/Dia: Using relative path information by entering dataset names, keep in mind that the starting
directory is the directory the executable dataset or batch dataset (also called script or batch
program) of the started program resides in.

1.6 Output Dataset for Control Information
Bat: After the short display of the identification page, the starting information is written and the
program asks you a dataset receiving control information:
 En-/decoding program C O D I N G 1 1.1 started.
 Started at: Th. 12/07/2006, 14:28:01.
 Please enter the name of the dataset for control information,
 if only error and dialogue information shall be written to screen and
 to this dataset put the dataset name in round brackets ("(",")")
 (empty input terminates the program):

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 7

Bat:/Dia: Here you enter a dataset name with path information, if necessary, for a new or able to
overwrite dataset which includes all relevant information (except of course security information !) of
chosen parameters and of done program tasks.

Dia: To enter an existing dataset and its path information into
the input field, you can click on the “folder” symbol on the
left side, choose a dataset, and click on the “Open” button of
the dataset choose dialogue. Afterwards you can still edit the
name in the input field as you like.
Bat:/Dia: If (Bat:) this dataset name is covered in round brackets or (Dia:) the checkbox field is
activated (Bat:/Dia:), only error and necessary dialogue information shall be passed on screen and
transferred to this dataset. Normal information is written neither to screen nor to this control
dataset.
The program works with the ANSI character set (MS Windows), it doesn ’t work with the OEM
character set (MS-DOS character set) which is taken into account reading this control dataset later.

1.7 Output of the Command Line Control Parameters
Bat: Now you can print out the detailed description of the control parameters in the command line
calling the program into this output dataset for control information:
 Shall a parameter description of this program be written
 to this dataset for control information ?
 0 - no, the program is to continue,
 1 - yes, after that the program is to continue,
 2 - yes, after that the program is to terminate.
 Please enter the corresponding number:
This happens with the values '1' and '2', the value ’0’ skips this output. The values '0' and '1'
continue the program.
Please notice that the program only asks you this question, if you are asked the control dataset
before. If the program gets the control dataset as a command line parameter, no such question is
asked and no description of the command line control parameters is written.

1.8 Parameter Dataset Handling
Bat: If you continue the program, you are asked in which form the program should handle its job
and therefore possibly limit the initialization process.:
 W A R N I N G: The initialization of the coding parameters
 takes up several time(!).
 Are you ready not to limit the initialization process
 and not to save intermediate results in a parameter dataset for coding ?
 0 - no, the initialization process shall be limited,
 parameter dataset handling is taken place,
 1 - yes, the initialization process remains u n l i m i t e d,
 n o protection of intermediate results takes place,
 9 - terminate the program.
 Please enter the corresponding number:
Bat:/Dia: In principle the initialisation process especially for the program CODING3 can take a lot
of time. If you work with big overlay datasets and/or a big iteration value (see below), there also
may be a time problem for the programs CODING1 and CODING2. To reduce this time-consuming
process, you can save the result of the initialisation process in a dataset – the parameter dataset –
to use it at enciphering or deciphering time instead of the original key.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 8

In extreme cases (especially program CODING3) its
possible that the initialisation process takes up to
several hours or even several days. Therefore you can
save intermediate results of the initialisation process
and continue with this initialisation process at later time
using the intermediate results stored before. To do this,
the initialization process has to be limited.
Dia: In the “simple” version of the program you have no
possibility to handle parameter datasets to avoid higher
complexity and details to be handled by the user.
In the “enlarged” version the qualities obtained by single
questions in batch mode are fixed by selecting the task
covering the actions to do. With that the parameter
fields required to handle the actions are activated and
such fields not required are deactivated. If necessary,
this fixing can modified by other selection fields.
Bat: Entering the value ’0’, you tell the program to use a
parameter dataset and possibly to limit the initialisation
process. The value ’1’ is only useful if you want to
handle datasets without using any parameter dataset.

1.8.1 Parameter Dataset
Bat: Choosing parameter dataset handling, the program asks you the name of the parameter
dataset:
 Please enter the name of the parameter dataset
 (empty input terminates the program):
Bat:/Dia: Please notice that the size of a parameter dataset is calculated as:
 parameter_dataset_size := 512 + n * bytes of byte-group * 2 ** (8 * bytes of byte-group),
with n=3 storing an intermediate result and n=2 storing a result of a parameter dataset, i.e. 2,048 /
393,728 / 150,995,456 (n=3) and 1,536 / 262,656 / 100,663,808 (n=2) bytes respectively using
CODING1/2/3.
A parameter dataset used in the current program task is n o t en-/deciphered and that is why it is
not destroyed (see about it 1.10. Exception Dataset below).
Dia: You can put a dataset name (with path name) into the input field of parameter datasets using
the same method as described in 1.6. Output Dataset for Control Information above. The default
extension with it is „par“. To help you especially by entering long dataset names, the program
displays the place of the cursor or the range of places being marked at the left side of the status
bar being at the bottom of the input mask. If the parameter dataset field isn’t selected i.e. hasn’t the
focus, the field information is displayed as stars. If the parameter dataset field is selected, the
contents of this field is only visible if the mouse pointer is located or moved in the central region of
this field. If the mouse pointer slowly leaves the
central region of this field, then the information is
hidden (technical: the more suitable
„OnMouseLeave“ event isn’t supported for such
fields today using the relevant development
system). Regardless of that marked field parts
are always visible.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 9

1.8.2 Using Parameter Dataset
Bat: In the following the program asks whether the named parameter dataset should be new
generated or its intermediate state should be continued:
 In which form the existing parameter dataset shall be used ?
 0 - the parameter dataset is r e p l a c e d ,
 1 - the intermediate state of the this parameter dataset is used,
 9 - terminate the program.
 Please enter the corresponding number:
1.8.3 Ciphering after Parameter Dataset Handling
Bat: If the program was able to open the parameter dataset successfully, you have to answer the
question whether datasets have to be ciphered if initialisation of the parameter dataset is finished:
 Shall coding of datasets take place after initialization ?
 0 - no, there is only the processing of the parameter dataset,
 1 - yes, after initialization coding of datasets takes place possibly,
 9 - terminate the program.
 Please enter the corresponding number:

Dia: Using the “enlarged” version, these information are already fixed by selecting the task (see
1.8. above).

1.8.4 Time Limit
Bat: If the state of the parameter dataset indicates an intermediate state, you are asked a time limit
the initialisation process is terminated automatically or manually or a new time-out limit is enquired:
 Approximately until which time the process for initialization of the
 coding parameters shall be terminated and the intermediate results
 shall be written to the parameter dataset »parameter_dataset«
 to continue the process at later time ? (empty input terminates the program):
 (in form of 'mm/dd/yyyy,hh:mm'; 99/99/9999,99:99 =unlimited):
Choosing „unlimited“, you are invited to confirm your selection because of safety reasons:
 W A R N I N G: The initialization of the coding parameters
 takes up several time(!).
 Are you ready not to limit the initialization process ?
 0 - no, the initialization process shall be limited,
 1 - yes, the initialization process remains u n l i m i t e d,
 9 - terminate the program.
 Please enter the corresponding number:
Dia: Using the “enlarged” version, you select „unlimited“ or you enter a time-out limit. Please notice
that the program is warning you if the time-out limit
is reached in less than 10 minutes till starting the
program task by “Start” button.

1.8.5 Action reaching Time-out Limit
Bat: If you have inserted a real time-out limit, you
are asked the action to do by exceeding this limit:
 After exceeding the given time limit the program shall
 0 - terminated automatically,
 1 - be continued possibly with new time limit asked for.
 9 - Terminate the program now.
 Please enter the corresponding number:
This closes the input of the parameter dataset handling information.
The following information about the processed datasets, the exception dataset, the processing
form, and the statistics are only asked if the question about ciphering data mentioned above is
positively answered or if no parameter dataset handling is wanted.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 10

1.9 Information to Datasets to process
Bat: If not only a parameter dataset handling takes place, you are asked in which form you want to
give the dataset(s) which shall be enciphered or deciphered:
 Which datasets shall be processed?
 1 one dataset and all datasets addressed by wild cards respectively,
 which name is given in the following input
 2 all datasets (possibly addressed by wild card information),
 which names are listed in the dataset given in the following input
 3 all datasets of the directory given in the following input
 4 all datasets of the directory given in the following input
 a n d these of all subdirectories of lower levels
 9 terminate the program.
 Please enter the corresponding number:
Bat:/Dia: (Bat:) Entering the value ’1’ or (Dia:)
choosing the first section (Bat:/Dia:), you can give
the dataset or datasets processed in the following
with path information, if necessary, in a direct way,
where you can use the special character ‘?’ for any
character and ’*’ for any group of characters in a
dataset name (”wild-card information“) as usual in
MS-DOS to choose many datasets.
(Bat:) Entering the value ‘2’ or (Dia:) choosing the
second section only possible in the “enlarged”
version (Bat:/Dia:) tells the program, you want to
give a dataset in the following which itself covers
dataset information with one dataset item per line or one combination of dataset and directory
information covered in "<",">" brackets per line to choose all matching datasets within a directory
tree beginning with the given directory identifying datasets to process. I.e. you have prepared a
dataset with dataset information of that datasets which shall be processed in the actual run. Please
pay attention to the fact that datasets addressed by many items shall be ciphered repeatedly !
If you don’t want to process these datasets in single mode, you can ignore this fact. But in any
case the processing time will be increased.
Dia: Choosing a dataset covering dataset names in
the “enlarged” version, you can edit the contents of
this dataset by selecting the “open dataset” button.
Doing this, the dataset contents is read into a list
and you get the items mentioning one or more
datasets repeatedly. You can exclude these entries
individually. Further you have the possibility e.g.
using the dataset choosing dialogue to enter single
datasets to the dataset name field for that used as
an editing field and modify it, before you can put it
on the list of datasets (“insert” button). To insert an
entry, it is put in place above the marked item.
Selecting the “delete” button, you can remove a marked item and put it into the editing field.
Possibly you can change it here and put it on the list again using the “insert” button. Every step
putting an item on the list leads the program to check all list entries for overlapping the entry being
inserted. To close work and pass the dataset list to the dataset opened, you have to select “save
namelist to dataset” button followed by the “close dataset” button. If you would reject the dataset
list, you can negate the question about saving the list after selecting the “close” button. The default
extension with such datasets covering dataset names is “dtn”.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 11

Bat:/Dia: In many cases you want to process all datasets of a directory or of a directory a n d all
subdirectories of any level. This is possible by (Bat:) entering the value ‘3’ or (Dia:) choosing the
third section (Bat:/Dia:) for datasets of exactly one directory and by (Bat:) entering the value ‘4’ or
(Dia:) choosing the fourth section (Bat:/Dia:) for all datasets within a directory tree. In these cases
the program in the following asks you the directory name, which can be completed by path
information as known by MS-DOS.
Dia: By clicking on the “folder” symbol, you start the
directory choose dialogue, then you can select a
directory and you can edit this directory name in the
editing field shown.
Bat: Depending on the input value you are asked as follows:
’1’:
 Please enter the identification of the dataset(s), which shall be processed
 (empty input terminates the program):
’2’:
 Please enter the name of the dataset, in which the names
 of all datasets to process are listed
 (empty input terminates the program):
’3’, ’4’:
 Please enter the name of the directory,
 which contains the datasets to process
 (empty input terminates the program):

1.10 Exception Dataset
Bat: After that you are asked to enter the name of an exception dataset:
 Please enter the name of the dataset, in which the names
 of all datasets n o t to be processed are listed
 (empty input = no exception dataset):
Bat:/Dia: This dataset comprises one dataset item per line (possibly with ”wild-card information“)
or one combination of dataset and directory information covered in "<",">" brackets per line
identifying datasets n o t being processed, even if these datasets are mentioned before as
datasets to process. You can prepare a dataset with such dataset items before if necessary.
Dia: Choosing a dataset covering dataset names in the “enlarged” program version, you can edit
the contents of this dataset or create this dataset by
selecting the “open dataset” button as described by
datasets to process (see 1.9. above). The default
extension with such exception datasets covering
dataset names is “exn”.
Bat:/Dia: The following datasets are n o t enciphered/deciphered by the current program task,
even if they are not mentioned by the exception dataset to preserve the possibility of deciphering
datasets enciphered before:
§ the module dataset containing the called program just running,
§ the dataset for control information,
§ used datasets containing the names of the datasets to be processed, if they are given

(e.g. the exception dataset too, if it is given here),
§ used datasets containing the (opening or closing) key, if they are given,
§ used datasets containing the overlay information, if they are given,
§ used parameter datasets, if they are given.
Not using an exception dataset, the program assumes that all other datasets mentioned before as
datasets to process have to be processed in fact.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 12

1.11 Processing Form
Bat:/Dia: Because of that the datasets which shall
be processed are fixed. But the question is, in
which form this shall take place:
 Dia:
Bat:
 In which form the dataset(s) shall be processed?
 1 encoding of single dataset(s)
 2 decoding of single dataset(s)
 3 encoding of dataset(s) as o n e unit
 4 decoding of dataset(s) as o n e unit
 9 terminate the program.
 Please enter the corresponding number:
Bat:/Dia: The terms “enciphering“/“encoding“ and “deciphering“/“decoding“ just go without saying
(although these operations can be used in transposed form !). But it’s of safety interest what it is
about the term “as one unit”.
First datasets enciphered as single datasets can be deciphered separate, i.e. not depending on
other datasets. If you enciphere datasets as one unit, exactly these datasets have to be
deciphered in same sequence to get the original contents. It’s not possible to deciphere such
datasets separate (!).
The benefit of enciphering datasets as one unit is that the key parameters internally used by the
program aren’t put back to the initial condition for every dataset. Rather all involved datasets are
processed as one big dataset i.e. data blocks may be processed in a file-crossing way, so un-
authorized persons have much more difficulties by making an attempt to deciphere such datasets.
Processing a directory first the datasets of the directory are processed in alphabetic order. Second
the subdirectories of a directory are processed if required. These subdirectories are processed in
alphabetic order too if all datasets should be processed as one unit. Otherwise the sequence of
these subdirectories in internal tables of the operating system determines the sequence of the
processing (for reasons of simplification). Not depending on that, a directory tree is excluded in
accordance with a dataset-directory-combination entry of the exception dataset if it isn’t able to
have datasets being processed in such a directory tree.
As disadvantage remains that directories enciphered as one unit may n o t be modified or have to
transferred exactly in original condition before starting the deciphering process. You have the
possibility to do this e.g. by creating a dataset with all datasets to be involved in enciphering
sequence (see 1.6. dataset for control information above) and using this as a dataset covering
datasets to be deciphered (see bellow). So the ciphering algorithm only works on the contents of
each dataset, it doesn’t change any directory or similar information.
This fact may be used to get further safety. If you exchange the dataset on the first position for
example by renaming, even using the correct key there is no possibility to get the original contents
of the ciphered datasets without inverse renaming at all!

1.12 Statistics
(Bat:) Answering the following question positive or (Dia:) selecting the corresponding checkbox
(see above) (Bat:/Dia:), you can get summarized statistics about the ciphering result at the end of
a program task. Such statistics show you the quality of the definite ciphering result on enciphering,
it’s uninterested by looking at the process of ciphering itself.
Bat:
 Shall statistics of result data be made?
 0 no, result statistics shall not be made
 1 yes, result statistics shall be made
 9 terminate the program.
 Please enter the corresponding number:

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 13

1.13 Key Information
Bat:/Dia:
The course of ciphering data is identical for all CODING programs:
§ The user gives the program an initial key entered by the keyboard (or possibly by mouse

moves using a parameter dataset) or using a key dataset.
§ Possibly the user gives so-called overlay information and corresponding overlay parameters

(see 2. below) as well.
§ Using these initial data, the program calculates a set of parameters used to control the

ciphering process and possibly stored in a parameter dataset.
§ If a parameter dataset is used, you have the possibility to protect the usage of this parameter

dataset against unauthorised persons using a separate key.
The protecting part of a parameter dataset is interpreted as a common data block and therefore, if
necessary, is protected with analogue methods also used by ciphering data. If using parameter
datasets, you are able to use any random key as initial key. In these cases the parameter dataset
protection key takes the security function first associated with the initial key.
Technical that part of the parameter dataset possibly being ciphered has an internal structure, if
enciphered, not being distinguishable from an analogue parameter dataset part not enciphered. In
parameter datasets especially transformation tables are only present in form of their generation
parameters, the transformation tables themselves have a much to concise structure. Therefore
there is no possibility to decide whether a deciphering trial of a protected parameter dataset results
in an original parameter dataset that means it is successful or not. Also parameter datasets
“wrong” deciphered are usable. The programs cannot distinguish between “correct” and “wrong”
deciphered parameter datasets.
ATTENTION: If you save parameter datasets comprising intermediate states, please take into
account that these datasets contains information concerning the security, even if it doesn’t include
the final ciphering parameters totally. Such datasets for example can hold your initial key not
included in the final ciphering parameters and not being deduced form these final parameters (!).
For your safety you should enciphere such datasets with a “random” key before deletion.

The following information concerns all facts to deal with key information. The messages shown
here are in accordance with the program CODING1. Replacing 256 or 512 characters with 131,072
or 262,144 characters using CODING2 and 50,331,648 or 100,663,296 characters using
CODING3, you get the maximum characters being shown and accepted by these programs.
So it’s easy to see that for CODING2 and more necessary for CODING3 you have to use key
datasets or overlay datasets in direct mode to get approximately the entire range of keys being
possible.
If a key covers more than 256 /131,072 /50,331,648 key characters, the surplus characters are
ignored. If on the other hand less than this number of key characters are given, then the given key
characters are duplicated multiple and the result string is truncated to this number of characters for
further use. Nevertheless you should not choose to less and homogeneous characters as key
characters, because this, in extreme case (e.g. only hexadecimal null characters), could be result
in no enciphering (!).
Not having a rare extreme case, the results of enciphering, also using short keys, have no
characteristics with regard to the key length at all. Simply by searching the key a third person first
will test a shorter key probably, before it takes a longer input key into account – and gives up then.

In principle all special characters excepting line end characters (mostly generated by RETURN(↵)
button or <carriage return><line feed> or 0Dhex plus 0Ahex character) are interpreted as
components of a key of ASCII characters. During the key input entering hexadecimal characters,
line end characters may also be used to split key information to more than one line. (Bat:) Entering

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 14

ASCII characters by the keyboard, line end characters in general are ignored or interpreted as end
of key information if combined with an empty line. (Bat:/Dia:) Line end characters in datasets
comprising an ASCII key are interpreted as components of the key too.

1.13.1 Query to Parameter Dataset Security
Bat: If a parameter dataset is used, if the initialisation of the parameter dataset is finished, and if
no ciphering of data should take place, you are asked to protect this parameter dataset:
 Shall the parameter dataset be protected by a separate key?
 '0' - no, the parameter dataset shall not be protected by a key,
 'S' - yes, the parameter dataset shall be protected by a separate key.
 '9' - Terminate the program now.
 Please enter the corresponding number or character:
If you wish a protection with a separate key, you are asked for information about the parameter
dataset closing key.
Bat:/Dia: Using this parameter dataset, in future the program will ask you this key as parameter
dataset opening key, unless you remove this protection key by answering the above question in
the negative during a separate program task without ciphering data using the same parameter
dataset.

The following information about the “initial key”, if not mentioned otherwise, also refers to
“parameter dataset opening and closing key” analogous.

Dia: As discussed in 1.8. Parameter Dataset
Handling using the “simple” version of the
program, you can only work with initial key
information, also a random key isn’t useful
without parameter dataset.
In the “enlarged” version of the program selecting the action (see 1.8.) already fixes the key
information needed in fact. So you can enter only this information.

1.13.2 Character Set
Bat:
 Which character set you want to choose to enter the initial key
 1 ASCII characters (max. 256 characters)
 2 hexadecimal characters
 (max. 512 characters "0" to "9" and "A" to "F" respectively)
 9 terminate the program.
 Please enter the corresponding number:
Bat:/Dia: In this dialog it’s about the character set to enter and read in key information. To get the
possibility to enter all possible characters apart from the “normal” character set (ASCII character)
which can be entered by the keyboard, you can choose another character set (hexadecimal
character), so any two characters of which are combined to one key character by the program.
With this character set key characters can be generated which can not or only laboriously
generated in a direct way by keyboard buttons.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 15

Dia: Using the checkbox field on the right above the key input field, you can decide if you want to
enter or read key information direct or using a dataset in hexadecimal form or via ASCII characters.
In dialogue entering a direct key you have the possibility to change the character set at any time
i.e. from ASCII characters to hexadecimal characters and vice versa. With it ASCII characters
automatically are expanded to its hexadecimal values or in opposite direction hexadecimal values
are condensed to ASCII characters. The latter possibility only exists if there is no character value
00hex in the key (internally interpreted as the end of a string).
Further entering a key, it’s possible that leaving the input field by a mouse click problems can arise
occasionally, which can be avoided if you finish a direct key by pushing the return button. In spite
of appropriate efforts of the author it was impossible to remove all uneven patches up to now.

1.13.3 Input Mode
Bat:
 In which way you want to enter the initial key?
 0 twice via keyboard w i t h o u t echoing the input on the screen
 (second time for controlling!)
 1 once via keyboard w i t h screen control
 2 via a dataset containing the key
 9 terminate the program.
 Please enter the corresponding number:
Dia: In the selection area above the key input field you can decide to enter the key in a direct way
(keyboard) or to read the key using a dataset. Working with the “enlarged” version and using a
parameter dataset, you can additionally generate a random key by mouse moves or you can leave
the parameter dataset unenciphered respectively.

1.13.4 Keyboard Input
Bat: If you want to enter the key characters by keyboard, you get the possibility with (mode= ’1’):
 Please enter your initial key in hexadecimal/ASCII characters
 (end of key: press only return-button in line):
or with (mode=’0’):
 Please enter your initial key in hexadecimal/ASCII characters
 (end of key: press only return-button in line) once:
and with:
 Please enter your initial key in hexadecimal/ASCII characters
 (end of key: press only return-button in line) twice (control input):
Dia: By entering a direct key, there first is a “magnifying glass“ symbol on the left side of the key
input field. This symbol shows that the corresponding key is not entered or is not acknowledged by
repetition of the key. Any character of this field is represented by a star-character. There is no
possibility to inspect key characters of this field in a direct way. To give you an orientation
especially using long keys, the program displays the place of the cursor or the range of places
being marked at the left side of the status bar as already described above.
If you have finished the input of your key (also see the remarks in 1.13.2. above), you can inform
the program by pushing the return button or making a mouse click outside the key input field and
outside the checkbox field for hexadecimal input. Then the program will ask you to repeat the key.
If you answer in the negative, the key input is finished and the „magnifying glass“ symbol is
preserved as a memory. You can click this “magnifying glass“ symbol at any time to carry through
the confirmation of the key. If you answer in the affirmative, you get the possibility to confirm the
key by repetition under field heading “Repeat key”. Here too you can inform the program about the
end of the input by pushing the return button or making a mouse click outside the key input field
and outside the checkbox field for hexadecimal input.
If both inputs are identical, a “tick in green circle” symbol is shown indicating that the key input
is finished successfully. Any additional change of the key is interpreted as a new input of the key
and therefore has to be confirmed.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 16

1.13.5 Input via Key Dataset
Bat: If you want to use a dataset comprising the key (mode=’2’) with:
 In which way you want to enter the dataset name containing the initial key?
 0 twice via keyboard w i t h o u t echoing the input on the screen
 (second time for controlling!)
 1 once via keyboard w i t h screen control
 2 via a dataset containing the key
 9 terminate the program.
 Please enter the corresponding number:
you are asked first the kind of input of the name of the dataset comprising the key.
At second with:
 Please enter the name of the dataset containing the initial key
 (empty input terminates the program):
or with:
 Please enter the name of the dataset containing the initial key
 the first time (empty input terminates the program):
and with:
 Please enter the name of the dataset containing the initial key
 the second time (control input):
the dataset name is asked.
Dia: If you have chosen the item “key dataset” in the selection area for key input, the “folder”
symbol is shown on the left side of the key input field. In analogy to the description of 1.6. Output
Dataset for Control Information above you can insert a dataset name (with path information) in the
key input field. Here you get the cursor position in the status bar too. If the key dataset field isn ’t
selected i.e. hasn’t the focus, the field information is displayed as stars. If the key dataset field is
selected, the contents of this field only is visible if the mouse pointer is located or moved in the
central region of this field. If the mouse pointer slowly leaves the central region of this field, then
the information is hidden. Regardless of that marked field parts are always visible.
Bat:/Dia: Use key datasets if you have a complex or randomised key. A key dataset used by the
current program task is n o t processed in this task (so not destroyed as well), even if this dataset
is explicitly or implicitly addressed as a dataset to be processed (see 1.10. Exception Dataset
above).

1.13.6 Random Key Input
Dia: In connection with the handling of parameter
datasets you have the possibility to generate a
random key by mouse moves in conjunction with
pushing keyboard buttons and use this key as an initial key to generate the set of parameters for
ciphering data in a parameter dataset. Clicking on the “mouse” symbol , you get a window with
comments how to make it, before, after confirmation, you can begin with the key generation.
During the key generation process the key input field shows “>> random key << generation ...” and
a counter is set up in the status bar which shows you how many key elements are already
generated. If all key elements are generated or if you cancel the key generation process before,
you are informed by a separate dialogue window.
If the key generation process is successful, the “tick in green circle” symbol is shown. If you want to
repeat this generation process, you only have to click on this “tick in green circle” symbol.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 17

2 Description of Overlay Information of CODING
Bat:/Dia: The following information refers to the so-called “overlay information” especially being
very significant for the programs CODING2 and CODING3. The values of the shown messages are
values of CODING1 and have to be modified for CODING2 and CODING3 analogously.
“Overlay” means the possibility to modify a key manually or by datasets in a specific way resulting
in a so-called derived key. Changes can be restricted to definite positions in the key, to particular
key values, and to certain changing values inside the overlay information.
With that using a serial byte string, it is possible to use datasets, the overlay datasets, to overwrite
values at “chance” positions in the present key by “chance” values derived by the overlay datasets.
Dia: Overlay information are only used if the corresponding checkbox field “with overlay
information” below the initial key input field is switched on (see 1.13.1. above) or a parameter
dataset (see 1.8 above) is used in the state of “overlay once again”.

2.1 Overlay Information
Bat:/Dia: In general every single overlay information is constructed by two values:
• the position value and
• the value which the overlay value is derived from.
Using a serial byte string (“direct mode”), each information consists of character values formed by
characters being behind one another inside any dataset or inside any input character string (value
’7’ below). Depending on the program (CODING1/2/3) the position and overlay values are derived
each from 1 or 2 or 3 characters respectively.
Bat: In all other cases (not the direct mode) the information has to be like this:
 Shall the initial key be overlaid?
 0 no, no overlay of the initial key
 1 yes, in form of "<byteno-dec>:<charactr>,"
 2 yes, in form of "<byteno-dec>:<hexvalue>,"
 3 yes, in form of "<byteno-dec>:<decvalue>,"
 4 yes, in form of "<byteno-hex>:<charactr>,"
 5 yes, in form of "<byteno-hex>:<hexvalue>,"
 6 yes, in form of "<byteno-hex>:<decvalue>,"
 7 yes, in form of a serial byte string
 9 terminate the program.
 Please enter the corresponding number:
Herein is
 ’byteno-dec/-hex’ a decimal or hexadecimal number of the referred key position
 in the interval of 1 to 256 /65,536 /16,777,216
 or 1 to100hex /10000hex /1000000hex,
 ’charactr’ any 1 /2 /3 character(s),
 ’hexvalue’ a value in the interval of 0 to FFhex /FFFFhex /FFFFFFhex
 consisting of hexadecimal half byte characters of 0 to 9 and A to F,
 ’decvalue’ a decimal value in the interval of 0 to 255 /65,535 /16,777,215.
Dia: Using the “simple” version of the program, you only have the possibility to use overlay dataset
information in direct mode. Using the “enlarged” version, you can choose the form of the
metasyntax or the direct mode, it’s also possible to input the overlay information in direct form.
Further the intervals of the key overlay positions, the key overlay values, and the key values to be
changed can only be restricted by the user using the “enlarged” version, using the “simple” version
these intervals cover “all values”.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 18

For these interval fields it’s valid out of safety
reasons that if one of these fields isn’t selected i.e.
hasn’t the focus, the field information is displayed
as stars. If the field is selected, the contents of this
field only is visible if the mouse pointer is located or
moved in the central region of this field. If the
mouse pointer slowly leaves the central region of
this field, then the information is hidden. Regardless
of that marked field parts are always visible.
Bat:/Dia: If a parameter dataset is used and only a
parameter dataset handling takes place, you have
the possibility to overlay the key of the parameter dataset once again in further program tasks. To
do so, the parameter dataset is stored in state “overlay once again” and program terminates if the
current overlay operation is done.
Dia: Using the “enlarged” version of the program, you can cause the program to do this by
activating the checkbox field “save after overlay”.
Bat: To find out what to do, the program ask you the following question:

 Shall the initial key be overlaid once again in further program tasks?
 0 no, overlaying the key is finished after the current program task,
 1 yes, the initial key shall possibly be overlaid once again
 and the program terminates, if the current overlay operation is done.
 9 terminate the program.
 Please enter the corresponding number:
Bat:/Dia: With that it’s possible to carry out “any” complex overlay operations automatically.

2.2 Position Interval
Bat:
 Please enter the lower and the upper limit of positions in the key,
 which may be changed by overlay information:
 lower limit of positions (1 to 256 (0=termination)):
and
 upper limit of positions (nnn to 256 (0=termination)):
Bat:/Dia: This information fixes the positions overlay information has to refer to to be potentially
significant for changing the key. Only if the following overlay value interval information and the
following key value interval information additionally come true, an overlay information really takes
to overlay a key position by a value given by this overlay information.
Changes only take place at the positions of the position interval in principle.

2.3 Overlay Value Interval
Bat:
 Please enter the lower and upper limit of values
 of overlay information the key may be changed by (in decimal form):
 lower limit of values (0 to 255 (-1=termination)):
and
 upper limit of values (nnn to 255 (-1=termination)):
Bat:/Dia: This information fixes the values of the overlay information potentially being relevant for
changing the key. Only if the position interval information described before and the following key
value interval information additionally come true, an overlay information really takes to overlay a
key position by a value given by this overlay information.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 19

2.4 Key Value Interval
Bat:
 Please enter the lower and upper limit of key values
 that may be changed by overlay information (in decimal form):
 lower limit of key values (0 to 255 (-1=termination)):
and
 upper limit of key values (nnn to 255 (-1=termination)):
Bat:/Dia: This information fixes the values of the key information potentially being relevant for
changing. Only if the position interval information described before and the overlay value interval
information described before additionally come true, an overlay information really takes to overlay
a key position by a value given by this overlay information.

Doing this in general, it is possible that a position in the key can be overlaid repeatedly. After
overlaying a position in fact, the overlay value is the new key value for the further overlay
processing. The last overlay information applied to a position decides the value being the final key
value at this position.
Carrying out overlay processing, an input value or a dataset value first is transformed by
CODING1:
 overlay value := (input-/dataset-value + present key value * 113
 + key value at previous position or at position 256 for position 1) modulo 256
CODING2:
 overlay value := (input-/dataset-value + present key value * 30,781
 + key value at previous position or at position 65,536 for position 1) modulo 65,536
CODING3:
 overlay value := (input-/dataset-value + present key value * 100,000,000,019
 +key value at previous position or at position 16,777,216 for position 1) modulo 16,777,216
before the result-value is used as actual overlay value.
Position, overlay value, and key value interval information are of main interest to overlay datasets
in direct mode. In direct mode every dataset can be set as an overlay dataset, program module
datasets (*.COM, *.EXE) and other binary datasets too (!).

In general you have to observe that for all positions in the position interval in connection with an
overlay information varying in any kind and being (nearly) infinitely long the following is valid:

As a result the key values of the key value interval are (almost) entirely transformed to overlay
values of the overlay value interval.

If there are overlay values not belonging to the key value interval, the following more restricted
rule is valid:

As a result all the key values are (almost) entirely transformed to overlay values of the overlay
value interval which are not part of the key value interval (!).

The better an overlay information complies with these rules, all the more the named conclusions
are valid. That must be taken into account to avoid trivial keys !
Given an initial key, an overlay information, and an overlay value interval, the following is valid in
general:

Any key value interval covering this overlay value interval provides the same result key, if no
key value being element of the key value interval but not being element of the overlay value
interval is found in the initial key.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 20

2.5 Input Mode
Bat:
 In which way you want to enter the overlay information?
 0 twice via keyboard w i t h o u t echoing the input on the screen
 (second time for controlling!)
 1 once via keyboard w i t h screen control
using overlay information of type 1 to 6:
 2 via a dataset containing the overlay information
using overlay information of type 7:
 2 via one dataset and all datasets addressed by wild cards respectively,
 which name is given in the following input
 3 via all datasets (possibly addressed by wild card information),
 which names are listed in the dataset given in the following input
 4 via all datasets of the directory given in the following input
 5 via all datasets of the directory given in the following input
 a n d these of all subdirectories of lower levels
and:
 9 terminate the program.
 Please enter the corresponding number:
Dia: Using the “simple” version of the program, you only can use overlay dataset information, in
the “enlarged” version you can enter such information in dialogue.

2.6 Keyboard Input
Bat: If you want to enter the overlay information by keyboard, you get the possibility depending on
the type of information with:
’1’:
 Please enter the overlay information in form of "<byteno-dec>:<charactr>,"
’2’:
 Please enter the overlay information in form of "<byteno-dec>:<hexvalue>,"
’3’:
 Please enter the overlay information in form of "<byteno-dec>:<decvalue>,"
’4’:
 Please enter the overlay information in form of "<byteno-hex>:<charactr>,"
’5’:
 Please enter the overlay information in form of "<byteno-hex>:<hexvalue>,"
’6’:
 Please enter the overlay information in form of "<byteno-hex>:<decvalue>,"
’7’:
 Please enter the overlay information in form of a serial byte string
each with
 (end of overlay information: press only return-button in line):
or
 (end of overlay information: press only return-button in line) once:
and
 (end of overlay information: press only return-button in line) twice
 (control input):

Dia: Using the “enlarged” version, you can enter
the overlay information in direct form. If you enter
an overlay information in direct mode, these
information are handled as direct key information
including repetition (see 1.13.4. above). If you enter overlay information in metasyntax, the
following is valid. If this field isn’t selected i.e. hasn’t the focus, the field information is displayed as
stars. If the field is selected, the contents of this field only is visible if the mouse pointer is located
or moved in the central region of this field. If the mouse pointer slowly leaves the central region of
this field, then the information is hidden. Regardless of that marked field parts are always visible.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 21

Here the “magnifying glass“ symbol shows you that the syntax of the overlay information yet isn’t
checked successfully with regard to the selected metasyntax.

2.7 Input via Overlay Datasets
Bat: If you want to use overlay datasets with:
 In which way you want to enter the overlay dataset information?
 0 twice via keyboard w i t h o u t echoing the input on the screen
 (second time for controlling!)
 1 once via keyboard w i t h screen control
 9 terminate the program.
 Please enter the corresponding number:
you are asked first the kind of input of the information of the overlay datasets. At second
using overlay information of type 1 to 6:
 Please enter the name of the dataset containing the overlay information
using overlay information of type 7, input mode ’2’:
 Please enter the identification of the overlay dataset(s)
using overlay information of type 7, input mode ’3’:
 Please enter the name of the dataset, in which the names
 of all overlay datasets are listed
using overlay information of type 7, input mode ’4’, ’5’:
 Please enter the name of the directory,
 which contains the overlay datasets
all with:
 (empty input terminates the program):
or with:
 the first time (empty input terminates the program):
and:
 the second time (control input):
the dataset information is asked.
During the input of the overlay information via keyboard, line end characters are ignored i.e. may
be used to split overlay information to more than one line, or, combined with an empty line, are
interpreted as end of overlay information. But using overlay datasets in direct mode, line end
characters are part of the overlay information and not ignored.
Bat:/Dia: For the most part it recommends to use an overlay dataset if you have many overlay
information. Any overlay dataset used by the current program task is n o t processed in this task
(so not destroyed as well), even if this dataset is explicitly or implicitly addressed as a dataset to be
processed (therefore see 1.10. Exception Dataset above).
Dia: Using the “enlarged” version, it’s possible to use overlay datasets in one of the metasyntax
forms, using the “simple” version, all overlay datasets are in direct mode by definition.
If you choose “overlay dataset” activating the
corresponding checkbox filed, the “folder” symbol
is shown on the left side of the overlay information
input field.
In analogy to the description of 1.6. Output Dataset for Control Information above you can insert a
dataset name (with path information) in the input field. Here you get the cursor position in the
status bar too. If the input field isn’t selected i.e. hasn’t the focus, the field information is displayed
as stars. If the input field is selected, the contents of this field only is visible if the mouse pointer is
located or moved in the central region of this field. If the mouse pointer slowly leaves the central
region of this field, then the information is hidden. Regardless of that marked field parts are always
visible.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 22

2.8 Overlay Datasets in Direct Mode
Bat:/Dia: Overlay datasets in direct mode have a special position using key overlaying.

While it seems to be useful to give the overlay positions and their overlay values in a separate
(symbolic) way using “small” keys in connection with CODING1, this action is completely
unsuitable using “big” keys in connection with the other programs to generate a “random selection”
key of the available key room of the respective program.
That is why the method of key overlaying is expanded especially with regard to CODING2 and
CODING3.
First you can choose more than one overlay dataset (see 1.9 and 2.5 above) and all these
datasets are operated as one overlay unit (see 1.11 above) Dia: (only “enlarged” version). To do
so, you can insert a dataset name covering overlay datasets enclosed in round brackets (’(’, ’)’), a
directory name enclosed in square brackets (’[’, ’]’) or enclosed in angle brackets (’{’, ’}’) in the
overlay information input field. By clicking on the “folder” symbol, you can start the directory choose
dialogue and select a directory too if the first character in the input field is one of the brackets ’[’ or
’{’.
Second in this process the overlay datasets are used to overlay the initial key not only once but
multiple, what further more is called iteration of this overlay unit.

Without modification of the overlay unit each also this approach doesn’t supply much more
“chance” because at least the concerned positions in the initial key mentioned by the overlay unit
would be the same in every stage.
In fact the original overlay datasets are used to modify the key only once. At the second and
following stages the overlay unit itself is continually enciphered (!) before overlaying the initial
key again. For enciphering the overlay unit, parameters are used which are initialised themselves
by the initial key.
There are two big advantages in this way:
§ Not depending on the “chance nature” and therefore the quality of the overlay datasets,

extreme chance overlay information is generated by using the ciphering method presented
here on the overlay unit.

§ The quality of overlaying doesn’t depend on the length of the overlay unit.
As shown by examinations of the author, after approx. (x = length of overlay unit in bytes)
 1,410 / x (CODING1) 1,441,452 / x (CODING2) 854,889,360 / x (CODING3) iterations
the derived key is not any longer differ from a “chance” key.
That is why the program asks you for the iteration value if using overlay datasets in direct mode:
Bat:
 Please enter the value of the iterations the overlay information
 shall be changed by the key information overlaying the key each
 ('no iteration'=0 or 1 to 99999999 (-1=termination)):
Dia: The contents of the iteration field acts as the overlay information input field in the case of
entering an overlay dataset information (see above). The iteration field is only responsive or visible
by handling overlay datasets in direct mode.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 23

Bat:/Dia: Especially for overlay units being relative homogeneous or having less bytes than the
numbers above, an iteration value bigger than zero shall be chosen. If there are no restrictions by
using position, overlay value, and key value interval information, you shall choose the iteration
value at least as described above to found round about 63.2% of all possible key values in the
modified key (that’s the value of a randomised distribution of the possible key values) assuming an
initial key of “less” characters. Having a relative homogeneous overlay unit, you shall increase this
iteration value by 1. If there are restrictions by using position, overlay value, and key value interval
information, the calculated iteration value can be interpreted as a useful limit for a randomised
variability.

You are free to choose a bigger iteration value (this has no affect to the given 63.2%). But it should
be taken into consideration that big iteration values results in more time for key modification (here
the overlay datasets are read n+1 times and internally ciphered n times).

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 24

3 Real Program Processing
Bat:/Dia: Because all ciphered datasets are directly processed (no copies are generated at all), a
program interrupt in the ciphering phase can irretrievably destroy (!) one or more datasets, i.e.
you absolutely have to make backup copies e.g.
on other storage media (!). In success these
copies can be replaced by the enciphering results
to get protection against troubles during
deciphering.
Dia: To rule out an unintentional mistake
regarding this, the program only starts if you
have explicitly confirmed that you have made
backup copies !
If, for your opinion, you have entered and chosen all relevant information, you can start the real
program task by using the “Start” button (see 1.5. Common Things). Before starting the program
will again inform you about unconfirmed key and overlay information and will show you further
warnings, so you have the possibility to put off the start of the program again. If important
information is missing, the program stops the trial of starting in any case with a detailed error
message. After correction of the errors, you can try to start the program again.
In this phase the program doesn’t check all consistencies. If overlay datasets and/or parameter
datasets are handled, these datasets will be checked in detail at that moment.

3.1 Program Initialisation
Dia: If there are no difficulties find out
by the dialogue system, the program
begins its real task by displaying the
identification side for short-term (see
1.3. above) before under program
phase message ”Program is initializing ...“ the program shows the start message in the control
output window.
If you have activated the checkbox field below the control information dataset field (see 1.6.
above), then only “-- silence ! --“ is written into the control output window and a point in the next
line shows that the actual program task has been ended successfully. If there is no error (!), no
other messages are written to the control output window.
Bat:/Dia: If the program has to handle overlay information and shall report its activities (see 1.6.
above), this is shown by the following message:
 Begin of handling the overlay information: Th. 12/07/2006, 14:28:13.
by continuing its overlay information activities you can see:
 Continuation of handling the overlay information: Th. 12/07/2006, 14:28:13.
and the end of this section is shown as the following:
 End of handling the overlay information: Th. 12/07/2006, 14:28:13.

The initialisation section of the program reporting its activities is started with:
 Begin of initialization: Th. 12/07/2006, 14:28:13.
The CODING programs report the activities in the initialisation and overlay information section in a
different way. Because one table, one key, etc. covers 16,777,216 elements at 3 bytes in

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 25

CODING3 but only 256 bytes in CODING1, the activities corresponding to initialisation and overlay
information are reported in a much more different way in CODING3 than in CODING1.
Therefore the programs CODING1 and CODING2 are only interruptible by time-out if they have
closed an iteration step by the overlay handling, however the program CODING3 additionally
proves the time-out limit and therefore can be interrupted during the initialisation of the ciphering
parameters.
In case a parameter dataset handling takes place, the programs have information and enquiries for
this handling in common.
If, initialising a parameter dataset, the called time-out limit is exceeded and a new time-out limit
shall be enquired, the program asks you as follows:
Bat:
 Shall the program be continued with initialization ?
 0 - no, the program shall be terminated,
 1 - yes, the program shall continued with initialization.
 Please enter the corresponding number:
After that the program asks for a new time-out limit (see 1.8.4. above) and the action reaching this
limit (see 1.8.5. above) if you confirm the continuation of the program.
Dia: Besides the well known
parameters of the time-out limit (see
1.8.4. above) and the action reaching
this limit (see 1.8.5. above) the
dialogue mask additionally comprises
a checkbox field to cancel the program
task early. Using the “OK” button, you
either finish the actual program task or
you continue the actual program task
with the new parameters entered.

Bat:/Dia: If you use a parameter
dataset and before the generation and final storing of the parameters for ciphering data, the quality
of the initial key or the derived key respectively is shown in form of statistics (here: CODING1):
 contents of +--------- character-frequencies in %: --------+ % binary zero
 statistics: min.: max.: mean: variance: ones: groups:

 Key: 0.00000000 1.56250000 (0.39062500) 0.38832041 49.36523437 93
For that a key is much more identical to a “random key” the better it corresponds to the following
characteristics. That is
§ the number of null groups that is the number of characters/elements not belonging to the key is

close by the value 94 or 24,101 or 6,172,493 (CODING1/2/3) of all possible
characters/elements,

§ the percentage value of binary ones is close by 50%,
§ the maximum character/element-frequency is close by the mean value,
§ the variance is a small value.

Bat: If the initialisation process of a parameter dataset is closed and the program shall ask for the
next action, you will find the following question if datasets shall be ciphered:
 Shall the program be continued with coding datasets ?
 0 - no, the program shall be terminated,
 1 - yes, the program shall continued with coding datasets.
 Please enter the corresponding number:

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 26

Bat:/Dia: If the program shall report its activities, the end of initialisation is shown as follows:
 End of initialization: Th. 12/07/2006, 14:28:13.

3.2 Program Ciphering
Closing the initialisation – also a complete initialised parameter dataset needs an initialisation for
activating the transformation table(s) (see 1.13. above) – and if there is no plain handling of a
parameter dataset, the program starts with ciphering the data (i.e.):
 Begin of en-/decoding: Th. 12/07/2006, 14:28:13.
With that the program is n o t
interruptible any more. Because all
ciphered datasets are directly
processed (no copies are generated at
all), a program interrupt in this phase
can irretrievably destroy (!) one or
more datasets, i.e. you absolutely have
to make backup copies e.g. on other storage media (!). In success these copies can be replaced
by the enciphering results to get protection against troubles during deciphering.

If the program shall report its activities (see 1.6. above), the names of all processed datasets and
directories are written to the screen and to the control dataset during the processing, so every step
can be controlled by you actual and later.

If you request a set of statistics of all datasets (see 1.12. above), these results are written at the
end of the ciphering process (here: CODING1):
 contents of +--------- character-frequencies in %: --------+ % binary zero
 statistics: min.: max.: mean: variance: ones: groups:

all datasets: 0.38749079 0.39417626 (0.39062500) 0.00130741 49.99381021 0

The program task ends by writing the number of characters, datasets, and directories which have
been processed and the end message of the ciphering section (i.e.):
 212,430,600 bytes in 54 dataset(s) in 9 directory(ies) processed.
 End of process: Th. 12/07/2006, 14:28:35.

With the terminate message
 En-/decoding program C O D I N G 1 1.1 terminated.
the program (Bat:) stops (Dia:) leaves the task (Bat:/Dia:).

Dia: If a program task is finished, the operation buttons (see 1.5. above) are displayed and
activated again. Now you can leave the application by using the “Exit” button, you can use the
“Reset” button to clear input fields including the control output window or to reset values to the
default. If not doing so, messages of the last program task(s) are preserved during the processing
of further tasks, but identical datasets are overwritten or modified again (!).
If you move the mouse pointer in the control output window and this window covers more than 2
message lines, the control output window is faded up to the right lower corner of the main input
mask so you can read the messages much better. As soon as the mouse pointer leaves the control
output window, this window is scaled down to its initial size.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 27

4 Extensions of the Standard Program

4.1 Stream Cipher
Bat:/Dia: Associated with a professional usage, the program in “enlarged” version described until
now can be expanded fundamentally by the possibility of stream ciphering. This means the
possibility to store an achieved parameter state
which can be reactivated and continued to ciphere
further datasets. In connection with that a set of
parameters can be used potentially to encipher as
well as to decipher data. Dia:

Bat: After handling the processing form (see 1.11)
the following question is asked additionally:
 Shall stream cipher processing be used?
 0 no, stream cipher processing shall n o t be used,
 1 yes, stream cipher processing shall be used.
 Please enter the corresponding number:
or:
 Shall stream cipher processing be used?
 0 no, stream cipher processing shall n o t be used,
 1 yes, stream cipher processing shall be used
 using a "normal" parameter dataset,
 2 yes, stream cipher processing shall be used
 using a component exchange parameter dataset,
 3 yes, stream cipher processing shall be used
 using both a "normal" parameter dataset
 and a component exchange parameter dataset.
 Please enter the corresponding number:
Bat:/Dia: It’s true a “normal” parameter dataset used to store the state of stream ciphering isn ’t a
usual dataset but in contrary to the statement in 1.8.1 Parameter Dataset it is changed. This is
because a recent parameter state is stored again in it at end. That is why you should make a copy
of such a parameter dataset before processing to be able to fall back on a protected processing
state. This copy can be deleted or can be overwritten by the new generated parameter dataset
after successful processing.
Furthermore you have to take into account that you have to use different and therefore own
parameter datasets both for enciphering and deciphering a data unit.

Stream ciphering should be used
§ first if you wish higher safety and
§ second if you want data transmission between two or more persons/offices involved using an

uncertain and/or unsafe (public) connection (i.e. via internet).
Using stream ciphering the exchange of keys may be limited to a minimum. In contrary to the
standard program which generates components at the beginning and in the following if a cycle of a
pseudo random number process is finished (i.e. pseudo random numbers would be repeated), you
can control component exchanges in the expanded program (tightened up ciphering) more exactly
(see 5.2 Algorithm Parameters below).
In general the current internal operation key is used as an initial key to carry out a component
exchange. Using the resulting components for ciphering, you have no possibility to generate the
initial key in reverse processing (see “Examination of the Safety of the Algorithm in brief” too).
So if a set of components is compromised, all data ciphered before the last component exchange
is not compromised but further data is.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 28

To preserve the protection against compromising data ciphered after the next component
exchange (naturally data ciphered with the compromised set of components is compromised too),
it’s possible – if program works in highest cipher state – to “enciphere” the initial key by the
components of a second parameter dataset, the component exchange parameter dataset,
before a component exchange is carried out using this ciphered initial key.
To brake this barrier by an unauthorized third party (without any direct access to the component
exchange parameter dataset), first an attacker has to compromise “plenty” of sets of components
of the “normal” parameter dataset to have only basically a chance to get the set of components of
the second parameter dataset.

Ciphering single datasets (see 1.11 Processing Form above) using stream ciphering, a
component exchange is made at the beginning of every dataset.
If only the state of parameters of the component exchange parameter dataset is saved at end and
all datasets are ciphered as one unit, a component exchange is made at the beginning of the
processing of every unit. This is an absolute necessity to get adequate recovery points processing
more than one unit (the intermediate state of the standard parameters can not be saved because
there is no “normal” parameter dataset or this dataset may not be saved !).
If both a “normal” parameter dataset and a component exchange parameter dataset is used to
save the processing state of stream ciphering and all datasets are ciphered as one unit, a
component exchange is made at the beginning of the processing of the first unit. This is shown by
the stream cipher usage value of the parameter dataset which indicates whether a parameter
dataset is modified after initialisation or still in initial condition. This introduced component
exchange is made to guarantee the dependency already of the first used set of components on the
component exchange parameter dataset (afterwards it’s given automatically).

4.2 Component Exchange Parameter Dataset
Bat:/Dia: First a component exchange parameter
dataset is a “normal” parameter dataset with the
addition that this parameter dataset is only used to
enciphere the operation key in this program task.
 Dia:
Bat: Therefore the program (in highest cipher state)
asks you first if you want to use a component
exchange parameter dataset:
 Shall a component exchange parameter dataset be used?
 '0' - no, a component exchange parameter dataset shall not be used,
 'C' - yes, a component exchange parameter dataset shall be used.
 '9' - Terminate the program now.
 Please enter the corresponding number or character:
If this question is answered affirmative, the program will ask you the dataset name:
 Please enter the name of the component exchange parameter dataset
 (empty input terminates the program):
Bat:/Dia: As a “normal” parameter dataset a component exchange parameter dataset used in the
current program task is n o t en-/deciphered as a normal dataset but it is changed by storing the
final state of the ciphering parameters. That is why you should make a copy of a component
exchange parameter dataset before processing to be able to fall back on a protected processing
state. This copy can be deleted or can be overwritten by the new generated component exchange
parameter dataset after successful processing.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 29

As a “normal” parameter dataset a component exchange parameter dataset can be saved by a key
used again to protect the final parameter state of this dataset. If doing so, you will be asked to
enter the corresponding parameters or you can enter these information in the mask fields shown
before (as described in 1.13 Key Information especially in the sections 1.13.1 to 1.13.4).
Dia: To be able to leave a “normal” parameter dataset unchanged (the stream cipher state is not
saved in it) you can activate the corresponding checkbox filed below the name filed of the
component exchange parameter dataset.

4.3 Stream Cipher Usage Value
Bat:/Dia: You can explicitly change – invert – the
stream cipher usage value mentioned before too.
 Dia:
Bat: In the section described in 1.13.1 Query to
Parameter Dataset Security the program – if it works in highest cipher state – asks for:
 Shall the parameter dataset be protected by a separate key?
 '0' - no, the parameter dataset shall not be protected by a key,
 'S' - yes, the parameter dataset shall be protected by a separate key,
 'R' - yes, the parameter dataset shall be protected by a separate key
 and its stream cipher usage value has to be inverted.
 '9' - Terminate the program now.
 Please enter the corresponding number or character:
Bat:/Dia: You can change the stream cipher usage value only by changing the protection key of
the parameter dataset.

4.4 Compromising Key
Bat:/Dia: As described in 1.13 Key Information, there is no possibility to decide whether a
deciphering trial of a protected parameter dataset results in an original parameter dataset that
means it’s successful or not. This is internally guaranteed in this way that all information being
“treacherous” in any form are transformed in a representation in which every value occurs as a
regular valid value. Only if this is done, the so modified information is stored in a parameter
dataset.
Even if the algorithm realized in the program is traced regarding this, you have under no
circumstances the possibility to distinguish between a “correct” and “wrong” protection key with
regard to a parameter dataset !
This opens up the chance to use parameter datasets involved with stream ciphering in two (or
more) different ways. If an involved person/office isn’t “master of the situation” any more, it has the
possibility to inform all others about this “compromising” state in such a way that it doesn’t use the
parameter dataset in the present way but changes to a set of parameters by using a
compromising key previously defined for enciphering the parameter dataset. Being online this
send-site transition can also be arranged by a keyboard shortcut for example.
Then the recipients detect that the normal set of parameters of the transmitter fails and have the
possibility to change to the compromising set of parameters by enciphering with the normal
protection key and deciphering with the compromising key and try it again. If this action is
successful, the recipients for their part shall adapt their contents to the compromising state of the
transmitter.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 30

4.5 Disturbance of Data Transmission
For a transmitter a situation can appear in which after deciphering no useful result is yielded from a
certain data block up. Because the development of the parameters is running in absolute parallel
manner regarding the involved systems, there is only the possibility – besides compromising the
transmitter – that
§ there is a transmission error i.e. one or more data blocks are damaged,
§ a wrong protection key has been used,
§ a third party adds or deletes or destroys data blocks of the block stream to sabotage the

communication.
Because the ciphering method progress is not coupled to block contents, it’s potentially possible
to resynchronise the ciphering parameters to the block stream in the first and third case. That ’s
feasible by continuing the work if transmission errors appear or by ignoring data blocks or by using
the ciphering parameters virtual on unavailable data blocks.
But the given program is only an offline version at the moment (no direct/online communication) so
these conversions are reserved to a corresponding online version of the program.

4.6 Further Potential Application Possibilities
The existing algorithm ciphers the data blocks independently of each other. You can choose
(nearly) any block length you like, even variable block length, using the given program (see 5.2
Algorithm Parameters).
The chaining of data blocks analogue the CBC mode (Cipher Block Chaining) of the DES process
isn’t very useful in the opinion of the author, because only one error in data stream not limited to
data transmission forces the termination and therefore requires recovery. This opens up
compromising possibilities which are unnecessary because the safety of the present algorithm
seems to be sufficient enough even without block chaining. By the way error correcting codes (e.g.
Huffman-Code) should be used to detect and if necessary correct transmission errors.
With the CFB mode (Cipher Feedback) of the DES process for example you are able to generate
pseudo random numbers. As described in “Convergence Characteristic of the Central Operator
XOR”, it’s not the aim of the given method to generate all possible states of a block. The given
algorithm directs to block states with uniform distributions of bits, bytes and elements (byte-
groups). How far these block contents can be changed to get “useable” pseudo random numbers
by suitable modifications, it is reserved to future examinations.
The OFB mode (Output Feedback) of the DES process is independent of a block contents and is
used for authentication among other things. Also the given algorithm can be used for
authentications in (nearly) any length whatever. You only choose a fixed block length and a fixed
block contents and so you have “a lot of” different authentication methods based on the given
algorithm. As evaluated in “Examination of the Safety of the Algorithm in Brief”, there is no
possibility to draw conclusions to the ciphering parameters or even to the initial key.
In addition and on the analogy of that just said before, you can implement “any” hash method with
(nearly) any result length using the given method. By authentication as well as by hash methods
there is – in contrary to pseudo random numbers – no particular interest that all states of results
are generated. In the process the previous contents of the (single) block is simply connected to the
operation key (i.e. per ‘xor’) before the next block is treated. Treating the last block expanded to
the hash length (equal block length) in any way gives the result which is the hash cipher of the
data.

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 31

5 System and Algorithm Parameters of the Program
The described programs and components can be suited to the various requirements controlled by
internal parameters.

5.1 System Parameters
This includes all parameters concerning computer, operation system, and operating mode
adaptations.

5.1.1 Gruppe
 =1,2,3 - count of bytes per byte-group (element) (fixed for CODING1/2/3)

5.1.2 Modulart
 =0 - main program
 =1 - subprogram for GUI
 =2 - subprogram in DLL

5.1.3 DateiSystem
 =0 - Windows (also >4 GB)
 =1 - Unix without file logic >2GB
 =2 - Unix with file logic >2GB
 - - - - host file logic is not yet integrated

5.1.4 ZeichenSatz
 =0 - ASCII
 =1 - EBCDIC (i.e. Host-Computer)
If transferring enciphered files from ASCII to EBCDIC or vice versa, no byte conversion may be
taken place ! In case of doubt the files can be expanded before transferring and can be
unexpanded after transferring. After deciphering a transferred file on the destination system, an
explicit transformation to the destination system character set has to be additionally done for files
comprising "legible" characters.

5.1.5 BSigRtL
Double/Integer value significance of the mantissa/integer bytes increasing (the exponent following)
 =0,2 - from left to right (e.g. PC CPU)
 =1,3 - from right to left (e.g. mainframe CPU)
Output (and input) of the program is the byte sequence which is constructed or may be constructed
 =0,1 - by =0
 =2,3 - by =3 (“correct byte sequence”)
CODING2/3: Because almost all operations are carried out by elements and not by bytes, for
=1/=2 all input data as keys and file data are first switched from “correct byte sequence” to “correct
element valency” to be switched back at output time. Byte operations in connection with the
remainder of an element can only be carried out in the state of “correct byte sequence” and
therefore are excepted out of this as well as parameter datasets.
If (using identical CODING algorithm parameters, other system parameters variable) all computers
work with =0/=1 o r with =2/=3 (other combinations are n o t possible), then files can be
enciphered on a computer of one kind and can be deciphered on a computer of the other kind.
Also parameter files can be generated, completed, and/or used on computers of one or the other
kind using the same value combinations.

5.1.6 Verpflichtung
 =0 - without user commitment
 =1 - with user commitment and agreement

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 32

5.2 Algorithm Parameters
Using the following parameters, the algorithm can be adapted to a big range of requests which
concerns technical as well as security points.

5.2.1 varBlk (CODING1/2)
 =0 - fixed block length
 =1 - variable block length with max. block length = 2 * min. block length

5.2.2 BlockElem
 =n - fixed/minimal block length (of data) in elements (byte-groups);
 - it m u s t be >1 and <2**(16*Gruppe) and
 - it m u s t be >=8/4/4 (CODING1/2/3), if variable block length
 =512,256,16384 - current value for CODING1/2/3

5.2.3 BlkKey
 For fixed block length (CODING1/2: 'varBlk'=0):
 =0 - operation key length = block length
 =1 - block length >= operation key length
 =2 - operation key length >= 2 * block length
 =3 - block length < operation key length < 2 * block length
 CODING1/2: For variable block length ('varBlk'=1):
 =1 - min. block length >= operation key length
 =2 - operation key length >= 2 * max. block length
 =3 - min. block length < operation key length < 2 * max. block length
 CODING3:
 =4 - 2 + 'BlkKey2'=2 + variable block length
 with max. block length = 2 * min. block length
 (bigger max. block length aren't very useful at the moment and that is why it is not
 realized)

5.2.4 BlkKey2 (CODING3)
 =0 - no relevance (’BlkKey’<>2 and <>4)
 =1 - operation key length in elements < 3 * block length in elements
 =2 - operation key length in elements >= 3 * block length in elements

5.2.5 Safety
 =0 - default ciphering:
 - no repetition of linear substitution and no shifting modifying data blocks and the
 parameter dataset,
 - static repetition of linear substitution changing operation keys on exchange of
 components,
 - exchange of the components only after finishing a random number cycle,
 - static linear modification of the operation key after an average number of
 'MeanBlksD' blocks modifying data and of 'MeanBlksO' blocks modifying overlay
 data (operation key modification for e v e r y block if 'MeanBlks_'=0),
 - no usage of a separate component exchange parameter dataset,
 - no stream ciphering.
 =1 - tightened up ciphering
 - variable repetition of linear substitution and shifting modifying data blocks and the
 parameter dataset,

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 33

 - variable repetition of linear substitution changing operation keys on exchange of
 components,
 - exchange of the components after an average number of 'MeanBlksD' blocks
 modifying data and of 'MeanBlksO' blocks modifying overlay data (exchange of the
 components for e v e r y block if 'MeanBlks_'=0),
 - static linear modification of the operation key for any other block if operation key is
 exhausted,
 - no usage of a separate component exchange parameter dataset,
 - possibility of stream ciphering in accordance with using a parameter file and saving
 the last cipher state in the parameter dataset.
 =2 - highest cipher state:
 - tightened up ciphering (see =1),
 - exchange of the components possibly using a separate component exchange
 parameter dataset and saving the last component exchange state in the
 component exchange parameter dataset,
 - exchange of the components of this component exchange parameter dataset after
 an average number of 'MeanBlksX' operation key blocks (exchange of these
 components for e v e r y operation key modification if 'MeanBlksX'=0),
 - static linear modification of the operation key of the component exchange
 parameter dataset for any other operation key modification.
 =3 - highest cipher state:
 - the static linear modification of the operation key is interpreted as an "exchange of
 the components" too.

5.2.6 stLoop
 =n - static repetition of linear substitution >0 CODING3: and < 1000
 =2 - current value

5.2.7 stLoopC
 =n - static repetition of linear substitution >0 modifying the operation key of the
 component exchange parameter dataset
 =2 - current value

5.2.8 addLoop
 =n - additional value of the repetition value of linear substitution ciphering data blocks;
 this value increases the repetition value 'Loop' derived from the block length in
 elements as follows:
 Loop := (log2(block elements)+3)/4 + value out of [0,(log2(block elements)+3)/4]
 =0 - current value

5.2.9 opLoop
 =n - basic and max. additional value of the repetition value of linear substitution
 changing operation keys on exchange of components,
 - >= log2(key elements)/4 is useful, CODING3: < 500
 =2,4,6 - current values for CODING1/2/3

5.2.10 PDLoop
 =n - basic and max. additional value of the repetition value of linear substitution
 changing a parameter block
 - > log2(2* key elements)/4 is useful
 =3,5,7 - current values for CODING1/2/3

CODING Description User Manual

© SYSJM – Jü rgen Mü ller 2013.

page 34

5.2.11 EndShift
 =0 - no data block shifting at end
 =1 - with data block shifting at end

5.2.12 ClearCore
 =0 - no explicit erasing of main storage areas used by the program at end
 =1 - main storage areas used by the program are explicitly erased at end

Each of the following values identifies the bits of the repetition value i.e. the bits of the 2. random
number word / 1. random number element of the original and the current number which are to be
compared to one another. 2 to the power of this bit count is the value which identifies the average
number of blocks to be modified by
 - an identical operation key (’Safety’=0) or
 - identical components (’Safety’=1,2,3)
i.e. using 'Safety’=0 it m u s t be:
 MeanBlks_ := 2**q -1 with q >= 0 a n d
 with q < 8*Gruppe - ln(block elements / key elements) / ln(2) <= 16*Gruppe

5.2.13 MeanBlksX
 =n - modifying operation key blocks
=63,8388607,4294967295 - current values for CODING1/2/3

5.2.14 MeanBlksD
 =n - modifying data blocks
 - <=2**6 – 1 / <=2**23 – 1 / <=2**32 – 1
=63,8388607,4294967295 - current values for CODING1/2/3

5.2.15 MeanBlksO
 =n - modifying overlay data blocks
 - <=2**6 – 1 / <=2**23 – 1 / <=2**32 – 1
=63,8388607,4294967295 - current values for CODING1/2/3

6 Contact Data
 Email-address:
 sysjm@t-online.de, subject "Coding"

mailto:sysjm@t-online.de

