
Double Sorting: Testing Their Sorting Skills
Darrah P. Chavey

Beloit College; Dept. of Mathematics & Computer Science
700 College St.; Beloit, WI 53511

chavey@beloit.edu

ABSTRACT
You’re teaching elementary sorting techniques, and you would
like your students to do a programming assignment that tests their
understanding of the ideas. But all of the code for elementary
sorting techniques are in the textbook, easily found on the Web,
etc. We suggest the use of two “Double Sorting” techniques
whose solution is not standardly available, are fairly straight-
forward to code, and offer speed improvements over the “straight”
sorts. Double Sorting, the idea of processing two chosen elements
simultaneously, applies to both Insertion Sort and Selection Sort,
with speedups of 33% and 25%, hence are good enough to justify
coding, but not good enough to be in Web collections. Code for
this can be written in as little as a dozen lines of C++/Java code,
and is easily within the reach of introductory students who
understand the basic algorithms. In addition, the ideas used for
double sorting are natural first steps in understanding how the N 2
sorts can be improved towards the N log N sorts that they will
study later. For more advanced students, these double sorts also
generate good exercises in the analysis of algorithms.

Categories and Subject Descriptors
A.1 [Introductory and Survey]: CS1/CS2, Arrays, Sorting.

General Terms
Algorithms, Performance.

Keywords
Sorting, Insertion, Selection, Quicksort, CS1.

1. INTRODUCTION
When first teaching students about working with arrays, an
excellent programming exercise would be to explain the Insertion
Sort, or Selection Sort, algorithm to the students in class, and then
require that they convert the algorithm into code on their own. It
might even be possible to use such an assignment in a closed lab,
where the lab instructor was careful to watch for students who
grabbed the code off the web, or from the text, instead of writing
it themselves. In most cases, though, we need to resign ourselves
to the fact that this is not an effective programming assignment.
At least as good, though, is to demonstrate the sorting algorithm
and how to convert the algorithm into code, then demonstrate a
modification of that algorithm, and finally to assign the coding of
that modification as a programming exercise. This paper suggests
two such simple modifications of these sorting algorithms: Double
Insertion Sort, and Double Selection Sort.

A good programming exercise should, ideally, give the students
both programming practice, and help them understand significant
concepts. We will argue that each of the double sorts introduces
students to concepts that are important in other contexts. Because
the double sorting code is substantially different in the cases
where the array size is odd or even, these two sorting algorithms
provide examples of four programming assignments that are
roughly equivalent in difficulty, but almost completely
independent of each other, e.g. assign “Double Insertion Sort, odd
size arrays” one semester, etc. Consequently, they could provide
four semesters of “the same, but different” assignments before
recycling a previous assignment, reducing potential plagiarism
issues.

Double Insertion Sort does not currently (as of Dec., 2009) have
solutions on the Web, and the two available solutions for Double
Selection Sort are either less than helpful, or are probably
identifiable as copied. Since these sorts do not offer enough
substantial improvements over other sorting algorithms, we would
not expect that solution code would appear on the Web –
assuming that readers of this article do not post their own program
solutions on publicly accessible pages (and we ask that they avoid
doing this). Since the double sorts do offer substantial speed
improvements (33% and 25%) over the standard “single” sorts,
we can motivate such an assignment as an improvement on the
code that they probably have in their textbooks. In addition, since
both QuickSort and MergeSort, done properly, will use recursion
on large array sizes, but will have a threshold at which they will
switch to one of the N 2 sorts, one can argue that the use of a
double sort for these small array partitions will provide a (modest)
improvement to these two critical sorting algorithms.

Finally, while these sorting algorithms are aimed primarily at CS
1–CS 2 courses, the analysis of these algorithms can provide
useful exercises for a more advanced class doing analysis of
algorithms, and we will discuss this later.

2. RELATED WORK
Papers such as [4, 5] have worked to address related problems that
we have when trying to construct reasonable assignments
involving the N log N sorts. These assignments suffer from the
same difficulty of students Googling their results instead of
writing their own, and these authors have interesting suggestions
on ways to have students focus on the ideas and concepts of these
algorithms, while still having to develop their own code.

In [3], Juhlstrom suggest an interesting approach to getting
students to understand these N 2 sorts. In the only paper in the
ACM Digital Library with the word “Whimsical” in the title, he
suggests looking at N 3 sorts! In particular, he limits candidate
algorithms to those which “compare and move values [and where]
each operation must plausibly advance the sorting process.” By
constructing algorithms that create N 3 versions of Bubble Sort,
Selection Sort, and Insertion Sort, one can give students

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

381

assignments whose solutions they surely will not find with
Google, but which require an understanding of the algorithm. It
seems likely that class discussion of the differences between the
“textbook code” and their assigned algorithm would do much to
illuminate both the algorithms and the need to plan, and think,
before coding.

The Double Insertion Sort problem, as an “Assignment to Use
Next Week,” was included as part of the tutorial [1], although
individual assignments were not published in that journal, and the
assignment distributed did not include most of the additional
material of this paper. The Double Selection Sort problem is a
somewhat well-known problem, as will be discussed in section 6.

3. DOUBLE INSERTION SORT
One problem with Insertion Sort is that we always insert a new
element from the top of the array, even if will end up much closer
to the bottom. Wouldn’t it be faster to insert large elements from
the top and small elements from the bottom? An implementation
of this idea can be built by sorting an array from the center out.
Assume, for simplicity, that the array we’re sorting has an even
number of elements. Sort the center two elements. Take the two
elements on the “fringe” of the sorted portion of the array (the
ones immediately before and after the sorted portion); insert the
larger element of this pair from the top of the array, moving larger
elements up one by one as we would do in regular Insertion Sort,
until we find the right location for this new element. Finally,
insert the smaller one of this pair from the bottom of the array,
moving smaller elements down one by one.

Figure 1. Double inserting the fifth pair of elements.

Pictorially, imagine that we are at the point where 4 pairs of items
have been double insertion sorted. Then the middle 8 items of the
array are fully sorted, with the next pair drawn as ovals in figure 1.
We first interchange the two elements of this pair if necessary. We
insert the top item of this pair, exactly as if inserting the 9-th
element in Insertion Sort (but with a different “bottom element”
then in Insertion Sort). When that is done, we insertion sort the
bottom element, moving it up, essentially reversing the code for
Insertion Sort. We should note that because of the initial sort of the
two “outside” elements, we are guaranteed to have sentinels at both
ends of our region of activity, so we are guaranteed never to fall off
the array, or to leave the sorted portion of the array. This is both a
good teaching example of sentinels, and one way in which the code
is somewhat nicer than for straight insertion sort.

The coding requirements for this assignment are not particularly
difficult, although it can be simplified by assuming that the size of
the array is even (or that it is odd). The insertion sort from one end
of the array should follow directly from, say, code in your text or

your class. The student needs to infer the insertion sort in the other
direction, then spend some time thinking about where the center is
and how to move out from there. (With many options for “off by 1”
errors.) A useful extra credit option is to ask students to run Double
Insertion Sort against Insertion Sort to empirically compare their
performance. While we normally recommend assigning only the
“odd size” or “even size” array problem for students to program, an
interesting paired project (which we have not tried) is to have two
students work together, one primarily responsible for the odd case
and the other primarily for the even case.

This algorithm generally succeeds in the goal that the larger element
tends to be inserted from the large side of the array (e.g., the right
side), and the smaller element from the small side (the left). Thus
the initial swap of elements, if necessary, tends to move both items
a large step towards their final destination. This tends to noticeably
increase the speed of the algorithm as compared to Insertion Sort.
This algorithm can thus be viewed as a conceptual step towards
some of the faster exchange sorting algorithms, such as Shellsort
and Quicksort. These faster algorithms also begin with the premise
that we should often exchange elements that are far apart in the
array, so that both are moved a large step closer to their final
positions. The principal that speeds up Double Insertion Sort leads
naturally to this more general sorting principal.

It is easy, even at this level, for students to understand the
improvement in the worst-case time. If we were to insert items k
and k+1 using straight Insertion Sort, the worst case number of
comparisons will be 2k–1. However, in Double Insertion Sort the
smaller element can never move past the final location of the larger
one. For example, if the larger item of a pair must be moved 90% of
the way down the currently sorted array, then we are guaranteed that
the smaller item will be moved no more than 10% of the way up.
With the original comparison, inserting two items thus requires at
most k+1 comparisons, for a 50% worst-case speed-up. Overall,
Insertion Sort has a worst-case complexity of N 2/2 + O(N), while
Double Insertion Sort has a worst-case complexity of N 2/4 + O(N).
We might note also that the worst-case performance for Insertion
Sort occurs with the fairly “natural” example of a reverse sorted list,
while worst-case performance for Double Insertion Sort does not
seem to occur for any such “natural” example. In particular, it runs
in linear time on a reverse sorted list.

Although it is more complicated (see section 5), analysis shows that
Insertion Sort has an average-case complexity, for both assignments
and comparisons, of N 2/4 + O(N). On the other hand, Double
Insertion Sort can be shown to have an average case complexity
(either measure) of N 2/6 + O(N). Thus the average-case is 33%
faster, and the worst-case is 50% faster, than Insertion Sort.

Sample Java code for this problem is shown below. This code
works for odd size arrays; code for even size arrays is very similar,
and can fairly easily be combined with this into a single method.
There are a variety of ways to re-write the six lines of the “if”
statement. For example, one could replace this by two conditional
assignments, giving an 11 line solution to the problem. This “if”
statement involves a certain optimization that a student solution
would not likely include: Double insertion requires sorting a pair of
elements; Insertion sort pulls out the element before moving others
in the array; the code here combines those into a single step. This
optimization affects the O(N) constant in a full analysis, but does
not change the constant of the N 2 term.

382

public void doubleInsertionOddSize(long toSort[]) {

long smallerItem, largerItem;
int arraySize = toSort.length;
int toMove, middle = arraySize / 2;

for (int fringe = 0; fringe < arraySize/2; fringe++) {

// Put the pair being inserted into "smallerItem" and "largerItem"
if (toSort[middle - fringe - 1] > toSort[middle + fringe + 1]) {

smallerItem = toSort[middle + fringe + 1];
largerItem = toSort[middle - fringe - 1];

} else {
largerItem = toSort[middle + fringe + 1];
smallerItem = toSort[middle - fringe - 1];

}

// Now insert the larger item from the top
for (toMove = middle+fringe; toSort[toMove] > largerItem; toMove--)

toSort[toMove+1] = toSort[toMove];
toSort[toMove+1] = largerItem;

// And insert the smaller item from the bottom
for (toMove = middle-fringe; (toSort[toMove] < smallerItem); toMove++)

toSort[toMove-1] = toSort[toMove];
toSort[toMove-1] = smallerItem;

}
Figure 2. Java Code for Double Insertion Sort on Odd-Length Arrays

4. DOUBLE INSERTION SORT & THE N
log N SORTS
The author prefers to give students programming assignments that
have at least some sense of “realistic value,” as opposed to being
too apparently “make work” assignments. Of course one
advantage of double sorting as an assignment is that it isn’t
important enough to appear in places the students will easily find.
Better students will realize, however, that by itself double
insertion sort is not particularly important: The advantage of any
N 2 sort is in the simplicity of the code; if we were willing to put
up with more complicated code, we would probably go with an N
log N sort. Even at the CS 1/CS 2 level, we have some students
who know this. What most of them don’t know, though, is that
sorts such as Quicksort and Mergesort have break-even
thresholds, below which the N 2 sorts are superior, and that better
implementations of N log N sorts will use the recursive techniques
on large array sizes, but switch to an N 2 sort for small array
partitions. For example, Quicksort is often used down to a
threshold of size 15 (or some number close to that), then Insertion
Sort is used for partitions of that size or less. Based on the
previous discussion, one would expect that if we replaced
Insertion Sort with Double Insertion Sort, we would get some
modest amount of speed-up. That does, in fact, happen. We ran
100 trials on lists of size 10,000; 100,000; and 1,000,000, using a
threshold of 15, and running Insertion Sort in one case and Double
Insertion Sort in another case. (We used identical arrays for these
two cases to ensure comparability.) If we scale the number of
assignments and comparisons executed by Quicksort + Insertion
sort to 100%, the results for Quicksort + Double Insertion Sort are
shown in table 1:

Table 1. Quicksort Speedup Using Double Insertion Sort
N 10,000 100,000 1,000,000

Compares 97.5% 98.1% 98.4%
Assigns 89.1% 91.0% 92.3%

Of course as N gets larger, we expect these numbers to increase,
because the N log N component must (asymptotically) overwhelm
the N 2 component for these small partitions. While these
improvements are quite modest, given the importance of
Quicksort and the difficulty in improving it, it is still somewhat
impressive that it is possible to get an 8-9% speed-up in it using a
introductory student level program.

5. AVERAGE-CASE ANALYSIS OF
DOUBLE INSERTION SORT
The average case analysis of Double Insertion Sort is beyond what
we would normally expect to present to a CS1/CS2 class. We
have, however, used it in an upper-level algorithms class, and it
might be appropriate for a Discrete Math course in the CS
curriculum as well, so we outline the analysis here, focusing on
the number of comparisons only.

Inserting the larger number from the top is symmetrical with
inserting the smaller number from the bottom, so we need only
consider the cost of the former operation, and then double it. We
cannot calculate the insertion cost as we would with Insertion
Sort, because the distribution of the final location of this element
is not evenly distributed — it is much more likely to be on the
right side of the array than on the left. Instead, we begin with the
state where we have just completed the sorting of elements k–1
and k, so that we now have a sub-array of k sorted items, which
we number from 1 to k. We now ask how many comparisons did it
take us to get the larger of the last two items into place? In
particular, what is the probability that the top item moved i–1
steps down this part of the array, and landed in position k–i ? This
probability is given by the number of ways of choosing two

383

elements from this array (i.e. the last pair inserted) with the larger
item being in position k–i, divided by the number of ways of
choosing any two elements from this array. Since the larger one
must have been in position k–i, and we have k–i–1 options for
where the smaller element was (see figure 3), this probability is
(k–i–1) / .

Figure 3. The cost of inserting an item from the top.

It will have taken us i comparisons for this insertion, so
summing up the expected value of all such comparisons tells
us that the average number of comparisons will be

 . Standard summation techniques

reduce this to k / 3. Doubling this (for inserting the lower
item) and summing for every other value of k (since we add

two items at a time) can be written as:

which gives N(N–1) / 6 + O(N).

6. DOUBLE SELECTION SORT
Unlike Double Insertion Sort, Double Selection Sort has been
described before, and can be found in two sources on the Web
(and, as best as I can find, only those two sources). One of these
sources, [6], has it available, but somewhat difficult to locate,
written in Visual Basic, and probably offers more translation
problems than writing it in Java or C++ in the first place. The
second source, [2], has it in C++, but probably in a style from
which plagiarism would be easily detectable. Thus while this as a
program assignment is slightly more problematic than Double
Insertion Sort, it is still probably usable, and introduces another
important algorithm that we often show our students at this level.

Selection Sort finds the minimum, or maximum, of N elements in
N–1 comparisons. The MaxMin algorithm lets you find the
minimum and maximum of N elements in 3N/2 comparisons
(keep the current min and max; take 2 more elements, compare
them against each other; then compare the two largest and the two
smallest). To convert this to a sorting algorithm, we reverse the
“build direction” of the Double Insertion Sort algorithm by sorting
our array from the outside in. Find the Max & Min in array
elements [0 … N–1], place them in the two outside positions, then
iterate this algorithm with the remaining array elements [1 … N–
2]. While Selection Sort requires N 2/2 + O(N) comparisons,
Double Selection Sort will require 3N 2/8 + O(N) comparisons, for
a 25% speedup on this measure. Unfortunately, Selection Sort is
used primarily when comparisons are much cheaper than
assignments, since it uses only N + O(1) assignments.
Consequently, this improvement does not have as much of the
“real-life value” that Double Insertion Sort has. Nevertheless, it
could still be a useful assignment, or for a class that’s seen Double
Insertion Sort, it would make a useful comparison and an
opportunity to demonstrate the MaxMin algorithm.

7. REFERENCES
[1] Cutter, P. and Schultz, K. 2004. Assignments to Use

Next Week: Tutorial Presentation. J. of Computing
Sciences in Colleges 20(1), Oct. 2004, p. 114.

[2] Gordon, S. 2007. Benchmark of Sorting Algorithms on
Arrays. http://pr.stewartsplace.org.uk/d/sortbench.d

[3] Julstrom, J., 1992. Slow Sorting: A Whimsical Inquiry.
ACM SIGCSE Bulletin 24(3), Sept. 1992, pp. 11-13.

[4] Merritt, S., and Nauch, C., 1990. Inventing A New
Sorting Algorithm: A Case Study. ACM SIGCSE
Bulletin 22(1), Feb. 1990, pp. 181-185.

[5] Rolfe, T., 2005. List processing: sort again, naturally.
ACM SIGCSE Bulletin 37(2), June 2005, pp. 46-48.

[6] VBExplorer, 2004. Sorting Viewer – Sorting Methods
Discussed. http://www.vbexplorer.com/VBExplorer/
vb_feature/august2000/sv4.asp

384

