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ABSTRACT 
You’re teaching elementary sorting techniques, and you would 
like your students to do a programming assignment that tests their 
understanding of the ideas. But all of the code for elementary 
sorting techniques are in the textbook, easily found on the Web, 
etc. We suggest the use of two “Double Sorting” techniques 
whose solution is not standardly available, are fairly straight-
forward to code, and offer speed improvements over the “straight” 
sorts. Double Sorting, the idea of processing two chosen elements 
simultaneously, applies to both Insertion Sort and Selection Sort, 
with speedups of 33% and 25%, hence are good enough to justify 
coding, but not good enough to be in Web collections. Code for 
this can be written in as little as a dozen lines of C++/Java code, 
and is easily within the reach of introductory students who 
understand the basic algorithms. In addition, the ideas used for 
double sorting are natural first steps in understanding how the N 2 
sorts can be improved towards the N log N sorts that they will 
study later. For more advanced students, these double sorts also 
generate good exercises in the analysis of algorithms. 

Categories and Subject Descriptors 
A.1 [Introductory and Survey]: CS1/CS2, Arrays, Sorting. 

General Terms 
Algorithms, Performance. 

Keywords 
Sorting, Insertion, Selection, Quicksort, CS1. 

1. INTRODUCTION 
When first teaching students about working with arrays, an 
excellent programming exercise would be to explain the Insertion 
Sort, or Selection Sort, algorithm to the students in class, and then 
require that they convert the algorithm into code on their own. It 
might even be possible to use such an assignment in a closed lab, 
where the lab instructor was careful to watch for students who 
grabbed the code off the web, or from the text, instead of writing 
it themselves. In most cases, though, we need to resign ourselves 
to the fact that this is not an effective programming assignment. 
At least as good, though, is to demonstrate the sorting  algorithm 
and how to convert the algorithm into code, then demonstrate a 
modification of that algorithm, and finally to assign the coding of 
that modification as a programming exercise. This paper suggests 
two such simple modifications of these sorting algorithms: Double 
Insertion Sort, and Double Selection Sort. 

A good programming exercise should, ideally, give the students 
both programming practice, and help them understand significant 
concepts. We will argue that each of the double sorts introduces 
students to concepts that are important in other contexts. Because 
the double sorting code is substantially different in the cases 
where the array size is odd or even, these two sorting algorithms 
provide examples of four programming assignments that are 
roughly equivalent in difficulty, but almost completely 
independent of each other, e.g. assign “Double Insertion Sort, odd 
size arrays” one semester, etc. Consequently, they could provide 
four semesters of “the same, but different” assignments before 
recycling a previous assignment, reducing potential plagiarism 
issues. 

Double Insertion Sort does not currently (as of Dec., 2009) have 
solutions on the Web, and the two available solutions for Double 
Selection Sort are either less than helpful, or are probably 
identifiable as copied. Since these sorts do not offer enough 
substantial improvements over other sorting algorithms, we would 
not expect that solution code would appear on the Web – 
assuming that readers of this article do not post their own program 
solutions on publicly accessible pages (and we ask that they avoid 
doing this). Since the double sorts do offer substantial speed 
improvements (33% and 25%) over the standard “single” sorts, 
we can motivate such an assignment as an improvement on the 
code that they probably have in their textbooks. In addition, since 
both QuickSort and MergeSort, done properly, will use recursion 
on large array sizes, but will have a threshold at which they will 
switch to one of the N 2 sorts, one can argue that the use of a 
double sort for these small array partitions will provide a (modest) 
improvement to these two critical sorting algorithms. 

Finally, while these sorting algorithms are aimed primarily at CS 
1–CS 2 courses, the analysis of these algorithms can provide 
useful exercises for a more advanced class doing analysis of 
algorithms, and we will discuss this later. 

2. RELATED WORK 
Papers such as [4, 5] have worked to address related problems that 
we have when trying to construct reasonable assignments 
involving the N log N sorts. These assignments suffer from the 
same difficulty of students Googling their results instead of 
writing their own, and these authors have interesting suggestions 
on ways to have students focus on the ideas and concepts of these 
algorithms, while still having to develop their own code.  

In [3], Juhlstrom suggest an interesting approach to getting 
students to understand these N 2 sorts. In the only paper in the 
ACM Digital Library with the word “Whimsical” in the title, he 
suggests looking at N 3 sorts! In particular, he limits candidate 
algorithms to those which “compare and move values [and where] 
each operation must plausibly advance the sorting process.” By 
constructing algorithms that create N 3 versions of Bubble Sort, 
Selection Sort, and Insertion Sort, one can give students 
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assignments whose solutions they surely will not find with 
Google, but which require an understanding of the algorithm. It 
seems likely that class discussion of the differences between the 
“textbook code” and their assigned algorithm would do much to 
illuminate both the algorithms and the need to plan, and think, 
before coding. 

The Double Insertion Sort problem, as an “Assignment to Use 
Next Week,” was included as part of the tutorial [1], although 
individual assignments were not published in that journal, and the 
assignment distributed did not include most of the additional 
material of this paper. The Double Selection Sort problem is a 
somewhat well-known problem, as will be discussed in section 6. 

3. DOUBLE INSERTION SORT 
One problem with Insertion Sort is that we always insert a new 
element from the top of the array, even if will end up much closer 
to the bottom. Wouldn’t it be faster to insert large elements from 
the top and small elements from the bottom? An implementation 
of this idea can be built by sorting an array from the center out. 
Assume, for simplicity, that the array we’re sorting has an even 
number of elements. Sort the center two elements. Take the two 
elements on the “fringe” of the sorted portion of the array (the 
ones immediately before and after the sorted portion); insert the 
larger element of this pair from the top of the array, moving larger 
elements up one by one as we would do in regular Insertion Sort, 
until we find the right location for this new element. Finally, 
insert the smaller one of this pair from the bottom of the array, 
moving smaller elements down one by one.  

 
 

 
Figure 1. Double inserting the fifth pair of elements. 

 
Pictorially, imagine that we are at the point where 4 pairs of items 
have been double insertion sorted. Then the middle 8 items of the 
array are fully sorted, with the next pair drawn as ovals in figure 1. 
We first interchange the two elements of this pair if necessary. We 
insert the top item of this pair, exactly as if inserting the 9-th 
element in Insertion Sort (but with a different “bottom element” 
then in Insertion Sort). When that is done, we insertion sort the 
bottom element, moving it up, essentially reversing the code for 
Insertion Sort. We should note that because of the initial sort of the 
two “outside” elements, we are guaranteed to have sentinels at both 
ends of our region of activity, so we are guaranteed never to fall off 
the array, or to leave the sorted portion of the array. This is both a 
good teaching example of sentinels, and one way in which the code 
is somewhat nicer than for straight insertion sort. 

The coding requirements for this assignment are not particularly 
difficult, although it can be simplified by assuming that the size of 
the array is even (or that it is odd). The insertion sort from one end 
of the array should follow directly from, say, code in your text or 

your class. The student needs to infer the insertion sort in the other 
direction, then spend some time thinking about where the center is 
and how to move out from there. (With many options for “off by 1” 
errors.) A useful extra credit option is to ask students to run Double 
Insertion Sort against Insertion Sort to empirically compare their 
performance. While we normally recommend assigning only the 
“odd size” or “even size”  array problem for students to program, an 
interesting paired project (which we have not tried) is to have two 
students work together, one primarily responsible for the odd case 
and the other primarily for the even case.  

This algorithm generally succeeds in the goal that the larger element 
tends to be inserted from the large side of the array (e.g., the right 
side), and the smaller element from the small side (the left). Thus 
the initial swap of elements, if necessary, tends to move both items 
a large step towards their final destination. This tends to noticeably 
increase the speed of the algorithm as compared to Insertion Sort. 
This algorithm can thus be viewed as a conceptual step towards 
some of the faster exchange sorting algorithms, such as Shellsort 
and Quicksort. These faster algorithms also begin with the premise 
that we should often exchange elements that are far apart in the 
array, so that both are moved a large step closer to their final 
positions. The principal that speeds up Double Insertion Sort leads 
naturally to this more general sorting principal. 

It is easy, even at this level, for students to understand the 
improvement in the worst-case time. If we were to insert items k 
and k+1 using straight Insertion Sort, the worst case number of 
comparisons will be 2k–1. However, in Double Insertion Sort the 
smaller element can never move past the final location of the larger 
one. For example, if the larger item of a pair must be moved 90% of 
the way down the currently sorted array, then we are guaranteed that 
the smaller item will be moved no more than 10% of the way up. 
With the original comparison, inserting two items thus requires at 
most k+1 comparisons, for a 50% worst-case speed-up. Overall, 
Insertion Sort has a worst-case complexity of N 2/2 + O(N), while 
Double Insertion Sort has a worst-case complexity of N 2/4 + O(N). 
We might note also that the worst-case performance for Insertion 
Sort occurs with the fairly “natural” example of a reverse sorted list, 
while worst-case performance for Double Insertion Sort does not 
seem to occur for any such “natural” example. In particular, it runs 
in linear time on a reverse sorted list. 

Although it is more complicated (see section 5), analysis shows that 
Insertion Sort has an average-case complexity, for both assignments 
and comparisons, of N 2/4 + O(N). On the other hand, Double 
Insertion Sort can be shown to have an average case complexity 
(either measure) of N 2/6 + O(N). Thus the average-case is 33% 
faster, and the worst-case is 50% faster, than Insertion Sort. 

Sample Java code for this problem is shown below. This code 
works for odd size arrays; code for even size arrays is very similar, 
and can fairly easily be combined with this into a single method. 
There are a variety of ways to re-write the six lines of the “if” 
statement. For example, one could replace this by two conditional 
assignments, giving an 11 line solution to the problem. This “if” 
statement involves a certain optimization that a student solution 
would not likely include: Double insertion requires sorting a pair of 
elements; Insertion sort pulls out the element before moving others 
in the array; the code here combines those into a single step. This 
optimization affects the O(N) constant in a full analysis, but does 
not change the constant of the N 2 term. 
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public void doubleInsertionOddSize( long toSort[] ) { 

long smallerItem, largerItem; 
int arraySize = toSort.length; 
int toMove, middle = arraySize / 2; 
 
for (int fringe = 0; fringe < arraySize/2; fringe++ ) { 
 

// Put the pair being inserted into "smallerItem" and "largerItem" 
if (toSort[ middle - fringe - 1 ] > toSort[ middle + fringe + 1 ]) { 

smallerItem = toSort[ middle + fringe + 1 ]; 
largerItem  = toSort[ middle - fringe - 1 ]; 

} else { 
largerItem  = toSort[ middle + fringe + 1 ]; 
smallerItem = toSort[ middle - fringe - 1 ]; 

} 
 

// Now insert the larger item from the top 
for (toMove = middle+fringe; toSort[toMove] > largerItem; toMove--) 

toSort[ toMove+1 ] = toSort[ toMove ]; 
toSort[ toMove+1 ] = largerItem; 
 
// And insert the smaller item from the bottom 
for (toMove = middle-fringe; (toSort[toMove] < smallerItem); toMove++) 

toSort[ toMove-1 ] = toSort[ toMove ]; 
toSort[ toMove-1 ] = smallerItem; 

} 
Figure 2. Java Code for Double Insertion Sort on Odd-Length Arrays 

 
 

4. DOUBLE INSERTION SORT & THE N 
log N SORTS 
The author prefers to give students programming assignments that 
have at least some sense of “realistic value,” as opposed to being 
too apparently “make work” assignments. Of course one 
advantage of double sorting as an assignment is that it isn’t 
important enough to appear in places the students will easily find. 
Better students will realize, however, that by itself double 
insertion sort is not particularly important: The advantage of any 
N 2 sort is in the simplicity of the code; if we were willing to put 
up with more complicated code, we would probably go with an N 
log N sort. Even at the CS 1/CS 2 level, we have some students 
who know this. What most of them don’t know, though, is that 
sorts such as Quicksort and Mergesort have break-even 
thresholds, below which the N 2 sorts are superior, and that better 
implementations of N log N sorts will use the recursive techniques 
on large array sizes, but switch to an N 2 sort for small array 
partitions. For example, Quicksort is often used down to a 
threshold of size 15 (or some number close to that), then Insertion 
Sort is used for partitions of that size or less. Based on the 
previous discussion, one would expect that if we replaced 
Insertion Sort with Double Insertion Sort, we would get some 
modest amount of speed-up. That does, in fact, happen. We ran 
100 trials on lists of size 10,000; 100,000; and 1,000,000, using a 
threshold of 15, and running Insertion Sort in one case and Double 
Insertion Sort in another case. (We used identical arrays for these 
two cases to ensure comparability.) If we scale the number of 
assignments and comparisons executed by Quicksort + Insertion 
sort to 100%, the results for Quicksort + Double Insertion Sort are 
shown in table 1: 

Table 1. Quicksort Speedup Using Double Insertion Sort 
N 10,000 100,000 1,000,000 

Compares   97.5%    98.1%    98.4% 
Assigns   89.1%    91.0%    92.3% 

Of course as N gets larger, we expect these numbers to increase, 
because the N log N component must (asymptotically) overwhelm 
the N 2 component for these small partitions. While these 
improvements are quite modest, given the importance of 
Quicksort and the difficulty in improving it, it is still somewhat 
impressive that it is possible to get an 8-9% speed-up in it using a 
introductory student level program.  

5. AVERAGE-CASE ANALYSIS OF 
DOUBLE INSERTION SORT 
The average case analysis of Double Insertion Sort is beyond what 
we would normally expect to present to a CS1/CS2 class. We 
have, however, used it in an upper-level algorithms class, and it 
might be appropriate for a Discrete Math course in the CS 
curriculum as well, so we outline the analysis here, focusing on 
the number of comparisons only.  

Inserting the larger number from the top is symmetrical with 
inserting the smaller number from the bottom, so we need only 
consider the cost of the former operation, and then double it. We 
cannot calculate the insertion cost as we would with Insertion 
Sort, because the distribution of the final location of this element 
is not evenly distributed — it is much more likely to be on the 
right side of the array than on the left. Instead, we begin with the 
state where we have just completed the sorting of elements k–1 
and k, so that we now have a sub-array of k sorted items, which 
we number from 1 to k. We now ask how many comparisons did it 
take us to get the larger of the last two items into place? In 
particular, what is the probability that the top item moved i–1 
steps down this part of the array, and landed in position k–i ? This 
probability is given by the number of ways of choosing two 
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elements from this array (i.e. the last pair inserted) with the larger 
item being in position k–i, divided by the number of ways of 
choosing any two elements from this array. Since the larger one 
must have been in position k–i, and we have k–i–1 options for 
where the smaller element was (see figure 3), this probability is  
(k–i–1) /  . 

 

 
Figure 3. The cost of inserting an item from the top. 

It will have taken us i comparisons for this insertion, so 
summing up the expected value of all such comparisons tells 
us that the average number of comparisons will be 

 . Standard summation techniques 

reduce this to k / 3. Doubling this (for inserting the lower 
item) and summing for every other value of k (since we add 

two items at a time) can be written as:          
 
 

which gives N(N–1) / 6 + O(N). 

6. DOUBLE SELECTION SORT 
Unlike Double Insertion Sort, Double Selection Sort has been 
described before, and can be found in two sources on the Web 
(and, as best as I can find, only those two sources).  One of these 
sources, [6], has it available, but somewhat difficult to locate, 
written in Visual Basic, and probably offers more translation 
problems than writing it in Java or C++ in the first place. The 
second source,  [2], has it in C++, but probably in a style from 
which plagiarism would be easily detectable. Thus while this as a 
program assignment is slightly more problematic than Double 
Insertion Sort, it is still probably usable, and introduces another 
important algorithm that we often show our students at this level. 

 

Selection Sort finds the minimum, or maximum, of N elements in 
N–1 comparisons. The MaxMin algorithm lets you find the 
minimum and maximum of N elements in 3N/2 comparisons 
(keep the current min and max; take 2 more elements, compare 
them against each other; then compare the two largest and the two 
smallest). To convert this to a sorting algorithm, we reverse the 
“build direction” of the Double Insertion Sort algorithm by sorting 
our array from the outside in. Find the Max & Min in array 
elements [0 … N–1], place them in the two outside positions, then 
iterate this algorithm with the remaining array elements [1 … N–
2]. While Selection Sort requires N 2/2 + O(N) comparisons, 
Double Selection Sort will require 3N 2/8 + O(N) comparisons, for 
a 25% speedup on this measure. Unfortunately, Selection Sort is 
used primarily when comparisons are much cheaper than 
assignments, since it uses only N + O(1) assignments. 
Consequently, this improvement does not have as much of the 
“real-life value” that Double Insertion Sort has. Nevertheless, it 
could still be a useful assignment, or for a class that’s seen Double 
Insertion Sort, it would make a useful comparison and an 
opportunity to demonstrate the MaxMin algorithm. 
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